Commit Graph

50523 Commits

Author SHA1 Message Date
Daniel Golle
0235186182 mediatek: add alternative UBI NAND layout for Linksys E8450
The vendor flash layout of the Linksys E8450 is problematic as it uses
the SPI-NAND chip without any wear-leveling while at the same time
wasting a lot of space for padding.
Use an all-UBI layout instead, storing the kernel+dtb+squashfs in
uImage.FIT standard format in UBI volume 'fit', the read-write
overlay in UBI volume 'rootfs_data' as well as reduntant U-Boot
environments 'ubootenv' and 'ubootenv2', and a 'recovery'
kernel+dtb+initramfs uImage.FIT for dual-boot.

** WARNING **
THIS PROCEDURE CAN EASILY BRICK YOUR DEVICE PERMANENTLY IF NOT CARRIED
OUT VERY CAREFULLY AND EXACTLY AS DESCRIBED!

Step 0

 * Configure your PC to have the static IPv4 address 192.168.1.254/24
 * Provide bin/targets/mediatek/mt7622 via TFTP

Now continue EITHER with step 1A or 1B, depending on your preference
(and on having serial console wired up or not).

Step 1A (Using the vendor web interface (or non-UBI OpenWrt install))

In order to update to the new bootloader and UBI-based firmware,
use the web browser of your choice to open the routers web-interface
accessible on http://192.168.1.1

 * Navigate to
   'Configuration' -> 'Administration' -> 'Firmware Upgrade'

 * Upload the file
    openwrt-mediatek-mt7622-linksys_e8450-ubi-initramfs-recovery.itb
   and proceed with the upgrade.

 * Once OpenWrt comes up, use SCP to upload the new bootloader files to
   /tmp on the router:
    *-mt7622-linksys_e8450-ubi-preloader.bin
    *-mt7622-linksys_e8450-ubi-bl31-uboot.fip

 * Connect via SSH as you will now need to replace the bootloader in
   the Flash.

    ssh root@192.168.1.1
    (the usual warnings)

 * First of all, backup all the flash now:

    for mtd in /dev/mtdblock*; do
     dd if=$mtd of=/tmp/$(basename $mtd);
    done

 * Then use SCP to copy /tmp/mtdblock* from the router and keep them
   safe. You will need them should you ever want to return to the
   factory firmware!

 * Now flow the uploaded files:
    mtd -e /dev/mtd0 write /tmp/*linksys_e8450-ubi-preloader.bin /dev/mtd0
    mtd -e /dev/mtd1 write /tmp/*linksys_e8450-ubi-bl31-uboot.fip /dev/mtd1

   If and only if both writes look like the completed successfully
   reboot the router. Now continue with step 2.

Step 1B (Using the vendor bootloader serial console)

 * Use the serial to backup all /dev/mtd* devices before using the
   stock firmware (you got root shell when connected to serial).

 * Then reboot and select 'U-Boot Console' in the boot menu.

 * Copy the following lines, one by one:

tftpboot 0x40080000 openwrt-mediatek-mt7622-linksys_e8450-ubi-preloader.bin
tftpboot 0x40100000 openwrt-mediatek-mt7622-linksys_e8450-ubi-bl31-uboot.fip
nand erase 0x0 0x180000
nand write 0x40080000 0x0 0x180000
reset

Now continue with step 2

Step 2

Once the new bootchain comes up, the loader will initialize UBI and the
ubootenv volumes. It will then of course fail to find any bootable
volume and hence resort to load kernel via TFTP from server
192.168.1.254 while giving itself the address 192.168.1.1

The requested file is called
openwrt-mediatek-mt7622-linksys_e8450-ubi-initramfs-recovery.itb
and your TFTP server should provide exactly that :)
It will be written to UBI as recovery image and booted.
You can then continue and flash the production OS image, either
by using sysupgrade in the booted initramfs recovery OS, or by using
the bootloader menu and TFTP.

That's it. Go ahead and mess around with a bootchain built almost
completely from source (only DRAM calibration blobs are fitted in bl2,
and the irreplacable on-chip ROM loader remains, of course).
And enjoy U-Boot built with many great features out-of-the-box.

You can access the bootloader environment from within OpenWrt using the
'fw_printenv' and 'fw_setenv' commands. Don't be afraid, once you got
the new bootchain installed the device should be fairly unbrickable
(holding reset button before and during power-on resets things and
allows reflashing recovery image via TFTP)

Special thanks to @dvn0 (Devan Carpenter) for providing amazingly fast
infra for test-builds, allowing for `make clean ; make -j$(nproc)` in
less than two minutes :)

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 01:23:48 +00:00
Daniel Golle
42f3efec96 uboot-envtools: add defaults for linksys-e8450-ubi
Add U-Boot environment configuration for the Linksys E8450 (UBI) to
allow access to the bootloader environment from OpenWrt via
'fw_printenv' and 'fw_setenv'.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 01:23:48 +00:00
Daniel Golle
ed50004319 uboot-mediatek: add support for Linksys E8450
Build U-Boot for the Linksys E8450 in order to have support for UBI.
The loader has a default environment with scripts handling the reset
button as well as fall-back to recovery firmware. If the loader comes
up without a valid environment found in UBI, it will automatically
make sure UBI is formatted and create a new environment and proceed
to load recovery firmware (either from UBI or via TFTP if recovery is
corrupted or unavailable).

If the button is held down during power-on, the yellow status LED
turns on and the bootloader environment is reset to factory defaults.
If the button is released at this point, the recovery firmware (if
existing) is loaded from UBI and booted.
If the button is continously held down even beyond the point that
the yellow LED turned on, the loader will try to load the recovery
firmware via TFTP from server 192.168.1.254, write it to UBI and
boot.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 01:23:48 +00:00
Daniel Golle
c16958e194 arm-trusted-firmware-mediatek: add patch for Fidelix SPI NAND
The Linksys E8450 aka. Belkin RT3200 comes with a rather fresh brand
of SPI NAND storage. Add support for it to the nandx driver in
arm-trusted-firmware-mediatek, so we can boot from that chip.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 01:23:48 +00:00
John Crispin
aa94e34c1d mediatek: add Linksys E8450 support
The Linksys E8450, also known as Belkin RT3200, is a dual-band
IEEE 802.11bgn/ac/ax router based on MediaTek MT7622BV and
MediaTek MT7915AN chips.

FCC: K7S-03571 and K7S-03572

Hardware highlights:
 - CPU: MediaTek MT7622BV (2x ARM Cortex-A53 @ 1350 MHz max.)
 - RAM: 512MB DDR3
 - Flash: 128MB SPI-NAND (2k+64)
 - Ethernet: MT7531BE switch with 5 1000Base-T ports
             CPU port connected with 2500Base-X
 - WiFi 2.4 GHz: 802.11bgn 4T4R built-in antennas
                 MT7622VB built-in
 - WiFi   5 GHz: 802.11ac/ax 4T4R built-in antennas
                 MT7915AN chip on-board via PCIe
                 MT7975AN front-end
 - Buttons: Reset and WPS
 - LEDS: 3 user controllable LEDs, 4 wired to switch
 - USB: USB2.0, single port
 - no Bluetooth (supported by SoC, not wired on board)
 - Serial: JST PH 2.0MM 6 Pin connector inside device
            ----_____________----
           [  GND RX - TX  -  -  ]
            ---------------------
 - JTAG:   unpopulated ARM JTAG 20-pin connector (works)

This commit adds support for the device in a way that is compatible
with the vendor firmware's bootloader and dual-boot flash layout, the
resulting image can directly be flashed using the vendor firmware.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 01:20:53 +00:00
Felix Fietkau
7a6d074824 kernel: add support for enabling fit firmware partition parser via cmdline
This is useful for dual-boot setups where the loader sets variables depending
on the flash boot partition.
For example the Linksys E8450 sets mtdparts=master for the first partition
and mtdparts=slave for the second one.

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 00:46:11 +00:00
Felix Fietkau
e230345bbc mediatek: add support for configuring BMT table size via device tree
Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 00:46:11 +00:00
Felix Fietkau
c46ccb69d1 mediatek: mt7622: add Linux 5.10 support
Switch mt7622 subtarget to Linux 5.10, it has been tested by many of us
on several devices for a couple of weeks already.

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 00:45:56 +00:00
Felix Fietkau
11425c9de2 mediatek: implement bad-block management table support
Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 00:09:09 +00:00
Felix Fietkau
f439e29130 build: use config.site generated by autoconf-lean, drop hardcoded sitefiles
Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 00:09:09 +00:00
Felix Fietkau
32c664ff02 toolchain: add autoconf-lean
Use it to generate a more comprehensive configure sitefile

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2021-02-28 00:09:09 +00:00
Daniel Golle
84a339f015 base-files: add support for restoring config from tmpfs
Instead of only relying in /sysupgrade.tgz being present in rootfs to
restore configuration, also grab /tmp/sysupgrade.tar which may have
magically gotten there during preinit...

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 00:09:09 +00:00
Daniel Golle
b7d125f455 fstools: update to git HEAD
bad1835 fstools: add partname volume driver

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 00:09:09 +00:00
Daniel Golle
6b0295a47d image: extend FIT partition parser for use on eMMC/SDcard
Introduce a magic GUID_PARTITION_LINUX_FIT_GUID to designate a GPT
partition to be interpreted by the FIT partition parser.
In that way, sub-partitions for (external-data) uImage.FIT stored
directly in a partition can be split, similar like we do for devices
with raw flash storage.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-28 00:09:09 +00:00
David Bauer
dc5328e7e9 include: use cpio from staging dir
As we built our own CPIO now, use this version instead of whatever the
host may or may not provide.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-28 00:09:09 +00:00
David Bauer
ad54e32651 tools: add cpio
mediatek-mt7622 as well as mediatek-mt7623 require CPIO to create their
initramfs images. So build CPIO as part of the host toolchain.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-28 00:09:09 +00:00
Jason A. Donenfeld
2a27f6f90a kernel: backport pending fix to select CPU_MIPS64
The CPU_MIPS64 and CPU_MIPS32 variables are supposed to be able to
distinguish broadly between 64-bit and 32-bit MIPS CPUs. However, they
weren't selected by the specialty CPUs, Octeon and Loongson, which meant
it was possible to hit a weird state of:

   MIPS=y, CONFIG_64BIT=y, CPU_MIPS64=n

This commit rectifies the issue by having CPU_MIPS64 be selected when
the missing Octeon or Loongson models are selected.

In particular, this affects our octeonplus target.

It has been posted to LKML here:
https://lore.kernel.org/linux-mips/20210227122605.2680138-1-Jason@zx2c4.com/

Cc: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Cc: David Bauer <mail@david-bauer.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2021-02-27 19:14:27 +01:00
John Audia
a1735fe73c kernel: bump 5.4 to 5.4.101
Ran update_kernel.sh in a fresh clone without any existing toolchains.

Build system: x86_64
Build-tested: ipq806x/R7800
Run-tested: ipq806x/R7800

No dmesg regressions, everything functional.

Signed-off-by: John Audia <graysky@archlinux.us>
2021-02-27 16:51:52 +01:00
Aleksander Jan Bajkowski
598de0f41c kernel: move some new symbols available on 5.10 to generic
Move some disabled config options found in sunxi target to generic.

Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>
2021-02-27 16:49:02 +01:00
Ilya Lipnitskiy
464451d9ab kernel: no chacha-mips.ko on mips32 r1 targets
CHACHA_MIPS depends on CPU_MIPS32_R2. Therefore,
kmod-crypto-lib-chacha20 should not contain chacha-mips.ko on MIPS32 R1
targets. Enforce that in the target-specific definition.

Fixes bcm47xx, bcm63xx, lantiq/ase, ath25 builds.

Fixes: 06351f1 ("kernel: migrate wireguard into the kernel tree")
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
2021-02-27 10:14:23 +01:00
Daniel González Cabanelas
cbcac4fde8 kernel: b53: update the BCM5365 UID
BCM63XX internal PHYs and BCM5365 SoC internal switch are both using the
same phy_driver->phy_id, causing conflicts and unnecessary probes. E.g
the BCM63XX phy internal IRQ is lost on the first probe.

The full BCM5365 UID is 0x00406370.

Use an additional byte to mask the BCM5365 UID to avoid duplicate driver
phy_id's. This will fix the IRQ issue in internal BCM63XX PHYs and avoid
more conflicts in the future.

Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
2021-02-26 21:11:19 +01:00
Ilya Lipnitskiy
cbcddc9f31 wireguard-tools: depend on kmod-wireguard
To the vast majority of the users, wireguard-tools are not useful
without the underlying kernel module. The cornercase of only generating
keys and not using the secure tunnel is something that won't be done on
an embedded OpenWrt system often. On the other hand, maintaining a
separate meta-package only for this use case introduces extra
complexity. WireGuard changes for Linux 5.10 remove the meta-package.
So let's make wireguard-tools depend on kmod-wireguard
to make WireGuard easier to use without having to install multiple
packages.

Fixes: ea980fb9 ("wireguard: bump to 20191226")
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:01 +01:00
Ilya Lipnitskiy
0b53d6f7fa kernel: fix kmod-wireguard package fields
Use NETWORK_SUPPORT_MENU like all other modules in netsupport.mk. Drop
SECTION and CATEGORY fields as they are set by default and to match
other packages in netsupport.mk. Use better TITLE for kmod-wireguard
(taken from upstream drivers/net/Kconfig).

Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:01 +01:00
Jason A. Donenfeld
e0f7f5bbce wireguard-tools: bump to 1.0.20210223
Simple version bump with accumulated fixes.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2021-02-26 20:41:01 +01:00
Ilya Lipnitskiy
23b801d3ba kernel: 5.4: generic: add missing symbols
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:01 +01:00
Ilya Lipnitskiy
06351f1bd0 kernel: migrate wireguard into the kernel tree
On Linux 5.4, build WireGuard from backports. Linux 5.10 contains
wireguard in-tree.

Add in-kernel crypto libraries required by WireGuard along with
arch-specific optimizations.

Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:01 +01:00
Ilya Lipnitskiy
3500fd7938 kernel: 5.4: fix patches after wireguard backport
No major problems, just a minor Kconfig fix and a refresh.

Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:01 +01:00
Jason A. Donenfeld
3888fa7880 kernel: 5.4: import wireguard backport
Rather than using the clunky, old, slower wireguard-linux-compat out of
tree module, this commit does a patch-by-patch backport of upstream's
wireguard to 5.4. This specific backport is in widespread use, being
part of SUSE's enterprise kernel, Oracle's enterprise kernel, Google's
Android kernel, Gentoo's distro kernel, and probably more I've forgotten
about. It's definately the "more proper" way of adding wireguard to a
kernel than the ugly compat.h hell of the wireguard-linux-compat repo.
And most importantly for OpenWRT, it allows using the same module
configuration code for 5.10 as for 5.4, with no need for bifurcation.

These patches are from the backport tree which is maintained in the
open here: https://git.zx2c4.com/wireguard-linux/log/?h=backport-5.4.y
I'll be sending PRs to update this as needed.

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2021-02-26 20:41:01 +01:00
Jason A. Donenfeld
7d4143234c kernel: 5.10: wireguard: backport 5.12-rc1 changes in net.git
These will eventually make their way to 5.10, but it could be a while.

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=ee576c47db60432c37e54b1e2b43a8ca6d3a8dca
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=5a0598695634a6bb4126818902dd9140cd9df8b6
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=99fff5264e7ab06f45b0ad60243475be0a8d0559
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=8b5553ace83cced775eefd0f3f18b5c6214ccf7a
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=bce2473927af8de12ad131a743f55d69d358c0b9

Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
[Rename 082-wireguard-kconfig... to 083-wireguard-kconfig...]
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:00 +01:00
Ilya Lipnitskiy
7d00f632b7 zynq: Enable CONFIG_KERNEL_MODE_NEON
This flag is set on all other platforms. And Zynq 7000 SoC does have
NEON support:
https://www.xilinx.com/support/documentation/application_notes/xapp1206-boost-sw-performance-zynq7soc-w-neon.pdf

Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
2021-02-26 20:41:00 +01:00
David Bauer
9a9cf40dd9 download: add mirror alias for Debian
Add an alias for Debian packages and download them from the Debian
mirror redirector.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-26 20:41:00 +01:00
David Bauer
01c01d9861 download: use mirror redirector for GNOME downloads
Use the GNOME mirror redirector as the primary download source for GNOME
packages.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-26 20:41:00 +01:00
David Bauer
cc2d61edc3 mpc85xx: remove fdt.bin image
When converting the fdt binary to be created as an artifact, the image
receipt was dropped but the entry in the target images list was not.

Fixes commit 1e41de2f48 ("mpc85xx: convert TL-WDR4900 v1 to simpleImage")

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-26 15:35:41 +01:00
Lech Perczak
59d065c9f8 ramips: add support for ZTE MF283+
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.

Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
  switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
  internally wired in parallel by 0-Ohm resistors, handled entirely by
  internal WWAN modem.
- USB: internal miniPCIe slot for modem,
  unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
  pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
  settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
  phone (bicolor, controlled by modem), Signal,
  4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.

Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.

There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.

(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
  omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
  like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
  persistent environment for next installation.
- If you ever might want to return to vendor firmware,
  BACK UP CONTENTS OF YOUR FLASH NOW.
  For this router, commonly used by mobile networks,
  plain vendor images are not officially available.
  To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
  most important, and copy them over network to your PC. But in case
  anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
  and execute sysupgrade.

(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
  (no quotes), for example using tftpd:
  cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
  5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
  minute.

Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery

(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
  installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
  your backup taken before OpenWrt installation, and /dev/mtd3 is the
  "firmware" partition.

(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
  with firmware backup you took during installation, or by vendor
  firmware obtained elsewhere.

A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
  despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
  WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
  for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
  modem, so it work independently of OpenWrt.
  Tested to work even before OpenWrt booted.
  I managed to open up modem's shell via ADB,
  and found from its kernel logs, that FXS and its LED is indeed controlled
  by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
  each and every one of them manually, so this might not be complete -
  it looks like bicolor LED is used for FXS, possibly to support
  dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
  read command, due to using 4k sectors throughout the target. I decided
  to keep it at the moment, to avoid breaking existing devices - I
  identified one potentially affected, should this be limited to under
  4MB of Flash. The difference between sysupgrade durations is whopping
  3min vs 8min, so this is worth pursuing.

In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.

Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.

A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
  submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
  uqmi did connect successfully, once I selected correct PDP context
  type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
  added to 51-android.rules like so:

SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"

While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-26 13:57:54 +01:00
Jeff Collins
6e0c780eb3 mvebu: add LED support for GL.iNet GL-MV1000
This patch enables LED support for the GL.iNet GL-MV1000

Signed-off-by: Jeff Collins <jeffcollins9292@gmail.com>
[add SPDX identifier on new file, add aliases, minor cosmetic issues]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-26 13:57:50 +01:00
Tom Stöveken
a6f7268dc7 ath79: fix USB power on TP-Link TL-WR810N v1
Before: Kernel reported "usb_vbus: disabling" and the USB was not
        providing power
After:  USB power is switched on, peripheral is powered from the
        device

Signed-off-by: Tom Stöveken <tom@naaa.de>
[squash and tidy up]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-26 13:57:02 +01:00
Rafał Miłecki
8078d89a53 bcm53xx: backport more upstream dts stuff from kernel 5.11
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2021-02-25 21:17:38 +01:00
Vivek Unune
39ed2265dd bcm53xx: backport Linksys Panamera (EA9500) patches
These patches have been already accepted.

302-ARM-dts-BCM5301X-Update-Northstar-pinctrl-binding.patch had to
be updated.

[rmilecki: use actual upstream accepted patches
           replace v5.10 with v5.11 to match actual upstream kernel
           recover dropped part of the pinctrl compatible patch
           update filenames
           refresh patches]

Signed-off-by: Vivek Unune <npcomplete13@gmail.com>
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2021-02-25 21:17:38 +01:00
Rafał Miłecki
d0ee398c36 bcm53xx: group dts backports by upstream kernel version
It's a simple renaming thing.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2021-02-25 21:17:38 +01:00
Álvaro Fernández Rojas
c919f7408d bmips: dts: fix syscon-reboot nodes
Using regmap with phandles is deprecated.

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2021-02-25 20:40:02 +01:00
Álvaro Fernández Rojas
5c223fb43f bmips: add BCM63268 timer clock and reset support
We need this to fix USB support on BCM63268.

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2021-02-25 20:40:02 +01:00
Álvaro Fernández Rojas
e2448e5e03 bmips: rewrite pin controllers
This is needed in order to upstream them.

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2021-02-25 20:40:02 +01:00
Adrian Schmutzler
ef2cb8572b treewide: rename IMAGE_PREFIX/IMAGE_NAME to DEVICE_IMG_*
We so far had two variables IMG_PREFIX and IMAGE_PREFIX with
different content. Since these names are obviously quite
confusing, this patch renames the latter to DEVICE_IMG_PREFIX,
as it's a device-dependent variable, while IMG_PREFIX is only
(sub)target-dependent.

For consistency, also rename IMAGE_NAME to DEVICE_IMG_NAME, as
that's a device-dependent variable as well.

Cc: Paul Spooren <mail@aparcar.org>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-25 18:11:06 +01:00
Daniel Golle
198385b69d mediatek: switch to use seperate ramdisk for initramfs images
MediaTek targets always use U-Boot's modern uImage.FIT format which
allows bundling several blobs into a single file including hashes,
descriptions and more. In fact, we are already using that to bundle
the Flattened Device Tree blob with the kernel on this and many
other targets.
In the same fashion, we can now make use of the newly introduced
support for building seperate ramdisk to uImage.FIT with a dedicated
initrd blob checked and loaded by U-Boot instead of embedding the
cpio archive into the kernel itself.
This allows for having larger ramdisks, choosing ramdisk compression
independently of kernel compression (while only kernel is decompressed
by the bootloader) and for more easily replacing or modifying the
filesystem contained in an initramfs image.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-25 16:39:55 +00:00
Daniel Golle
45c0e0ee41 oxnas: add experimental support for Linux 5.10
PCIe still reports link-down for some reason, RAID fails to assemble
despite SATA looking good (maybe a generic problem with RAID?)

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-25 16:39:55 +00:00
Daniel Golle
dc68af4a13 image: improve Kconfig for seperate ramdisk option
* show only if target supports it (ie. seperate_ramdisk feature set)
* select XZ compression by default of ramdisk is seperate

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-25 16:39:55 +00:00
Adrian Schmutzler
722f1bd549 ath79: enable UART node for GL-USB150
This was overlooked when adding support for this device.
(It has recently been discovered that this was the only device in
ath79 having &uart disabled.)

Fixes: acc62630132c ("ath79: add support for GL.iNet GL-USB150")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-25 15:12:05 +01:00
Daniel Golle
f074541f31 image: remove bogus mkimage command
That was a left-over from testing and should not have made it into the
tree. Remove it.

Fixes: 330bd380e8 ("image: allow building FIT and uImage with ramdisk")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-02-25 14:07:20 +00:00
John Audia
4b92663f7a kernel: bump 5.4 to 5.4.100
Ran update_kernel.sh in a fresh clone without any existing toolchains.

Build system: x86_64
Build-tested: ipq806x/R7800
Run-tested: ipq806x/R7800

No dmesg regressions, everything functional

Signed-off-by: John Audia <graysky@archlinux.us>
[refresh again]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-25 13:08:09 +01:00
David Bauer
512229ce49 build: avoid generating JSON info on missing image
Previously, build would fail for targets containing devices with not
initramfs image (such as mpc85xx-p1010). Only generate the JSON image
info for the initramfs image when we have one to avoid breaking the
builds.

Fixes commit d3140d0529 ("build/json: generate json file for initramfs")

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-24 22:28:45 +01:00