telos-extract/extract-text.py

135 lines
6.0 KiB
Python
Raw Normal View History

2024-01-29 21:19:10 +01:00
import PyPDF2
import pandas as pd
import regex, re
def extract_text_from_pdf(pdf_path):
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
lines = []
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
lines.extend(page.extract_text().split('\n'))
return lines
# Replace 'your_pdf_file.pdf' with the actual path to your PDF file
2024-09-29 22:37:18 +02:00
pdf_path = 'telos_nt.pdf'
2024-01-29 21:19:10 +01:00
extracted_text = extract_text_from_pdf(pdf_path)#.replace('\n', '')
def merge_entries(verse_list):
merged_list = []
current_entry = ""
for verse in verse_list:
# Check if the verse starts with a number
if re.match(r'^\d', verse):
# If it does, append the current entry to the merged list
if current_entry:
merged_list.append(current_entry)
# Set the current entry to the current verse
current_entry = verse
else:
# If it doesn't start with a number, concatenate to the current entry
current_entry += ' ' + verse
# Append the last entry
if current_entry:
merged_list.append(current_entry)
return merged_list
merged_entries = merge_entries(extracted_text)
df = pd.DataFrame(merged_entries, columns=['Scripture'])
# Remove an annoying typo
df['Scripture'] = df['Scripture'].str.replace(')Efeziers', 'Efeziërs')
df['Scripture'] = df['Scripture'].str.replace(')Hebreeën', 'Hebreeën')
df['Scripture'] = df['Scripture'].str.replace('-', '')
# Extract scripture and verse
df[['Verse', 'Scripture']] = df['Scripture'].str.split(' ', expand=True, n=1)
# Extract book name and chapter
split_columns = df['Scripture'].str.split(' ', expand=True)
# Extract the last two elements only if the last element is a number
df['Chapter'] = split_columns.apply(lambda x: next((elem for elem in reversed(x) if isinstance(elem, str) and elem.isdigit()), None), axis=1)
for index, row in df.iterrows():
if row['Chapter'] is not None:
if ',' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split(',')[-1]
elif '.' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split('.')[-1]
elif ';' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split(';')[-1]
elif ':' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split(':')[-1]
elif '?' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split('?')[-1]
elif '!' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split('!')[-1]
elif ')' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split(')')[-1]
elif '-' in row['Scripture'].strip().split(' ')[-2]:
df.at[index, 'Bookname'] = row['Scripture'].strip().split(' ')[-2].split('-)')[-1]
else:
# Split on capital letters preceded by lowercase letters
try:
# Check if preceding value is a number
preceding_value = regex.findall(r'\P{L}\p{Lu}\p{Ll}*|\p{Lu}\p{Ll}*|\p{Ll}+|[0-9]+', row['Scripture'].strip())[-3]
try:
if int(preceding_value):
df.at[index, 'Bookname'] = preceding_value + regex.findall(r'\P{L}\p{Lu}\p{Ll}*|\p{Lu}\p{Ll}*|\p{Ll}+|[0-9]+', row['Scripture'].strip())[-2]
except:
df.at[index, 'Bookname'] = regex.findall(r'\P{L}\p{Lu}\p{Ll}*|\p{Lu}\p{Ll}*|\p{Ll}+|[0-9]+', row['Scripture'].strip().split(' ')[-2].split('-)')[-1])[2]
except IndexError:
try:
df.at[index, 'Bookname'] = regex.findall(r'\P{L}\p{Lu}\p{Ll}*|\p{Lu}\p{Ll}*|\p{Ll}+|[0-9]+', row['Scripture'].strip().split(' ')[-2].split('-)')[-1])[1]
except IndexError:
df.at[index, 'Bookname'] = regex.findall(r'\P{L}\p{Lu}\p{Ll}*|\p{Lu}\p{Ll}*|\p{Ll}+|[0-9]+', row['Scripture'].strip().split(' ')[-2].split('-)')[-1])[0]
else:
df.at[index, 'Bookname'] = None # Replace 'new_value' with your desired modification
# Forward and backward fill Book
df['Bookname'] = df['Bookname'].fillna(method='ffill')
df['Bookname'] = df['Bookname'].fillna(method='bfill')
# Forward and backward fill Chapter
df['Chapter'] = df['Chapter'].fillna(method='ffill')
df['Chapter'] = df['Chapter'].fillna(method='bfill')
# Create a new column, named 'Book', which replaces the name in 'Bookname' with a number, starting at 40 for Matthew to Revelations, based on the set() of 'Bookname'
for book in df['Bookname'].unique():
df.loc[df['Bookname'] == book, 'Book'] = list(df['Bookname'].unique()).index(book) + 40
2024-09-29 22:37:18 +02:00
df.to_csv('telos.csv', index=False)
2024-01-29 21:19:10 +01:00
2024-09-29 22:37:18 +02:00
df_details = pd.DataFrame(columns=['Description', 'Abbreviation', 'Comments', 'Version', 'VersionDate', 'PublishDate', 'RightToLeft', 'OT', 'NT', 'Strong'])
df_details.loc[0] = ['Telos vertaling', 'TELOS', 'Telos from PDF. H. Medema Vaassen, revised from the original Voorhoeve translation from 1877.', '1', '2024-09-29', '1982-01-01', 0, 0, 1, 0]
df['Verse'] = df['Verse'].astype(int)
df['Chapter'] = df['Chapter'].astype(int)
df['Book'] = df['Book'].astype(int)
df['Bookname'] = df['Bookname'].astype(str)
df['Scripture'] = df['Scripture'].astype(str)
# Write both dataframes to a single db file
import sqlite3
conn = sqlite3.connect('telos.mybible')
df[['Book', 'Chapter', 'Verse', 'Scripture']].to_sql('Scripture', conn, if_exists='replace', index=False)
df_details.to_sql('Details', conn, if_exists='replace', index=False)
conn.close()
2024-01-29 21:19:10 +01:00
# with open('/mnt/c/Projects/telosvertaling/merged_entries.txt', 'w', encoding='utf-8') as f:
# f.write(str([text for text in merged_entries]))