import pandas as pd from sklearn.manifold import TSNE import seaborn as sns from matplotlib import pyplot as plt import os #Make sure working directory is the same! os.getcwd() os.chdir("C:\\Users\\Jonathan\\Desktop\BPS - RP1\\January\Week 12 - 11-01-2021\\15 January") df = pd.read_csv('output_data_warrior.csv', error_bad_lines=False) # print(df.shape) df_select = df[["rmsd1", "rmsd2"]] # print(df_select) # Text below was a try to show fingerprints (still possible, but unsure what use the plot would have) # df_length = len(df_select) # finger = Fingerprints[5] # print(finger) # for x in range(df_length): # finger = Fingerprints[x] # df_select = df_select[x].update(finger) # df_select = df_select.apply (pd.to_numeric, errors='coerce') # df_select = df_select.dropna() # df_select = df_select.apply (pd.to_numeric, errors='coerce') # df_select = df_select.dropna() # print(df_select) #Sets out the 2 selected columns from df_select against each other m = TSNE(learning_rate=40) tsne_features = m.fit_transform(df_select) tsne_features[1:4, :] df['tsne-2d-one']=tsne_features[:,0] df['tsne-2d-two']=tsne_features[:,1] plt.figure(figsize=(16,10)) sns.scatterplot( x="tsne-2d-one", y="tsne-2d-two", hue="tsne-2d-two", palette=sns.color_palette("flare", as_cmap=True), data=df, legend="brief", alpha=0.7 ) print("Created plot!") # sns.scatterplot(x="x", y="y", hue="y", palette=sns.color_palette("hls", 2), data=df, legend="full") # plot.show()