HerrewebPy/herrewebpy/mlops/anomaly_scoring.py
2025-01-03 15:27:05 +01:00

36 lines
1001 B
Python
Executable File

from herrewebpy import logger
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.preprocessing import StandardScaler
def perceptron_build_model(df, hidden_units=64):
numerical_features = df.select_dtypes(include=[np.number])
# Standardize the numerical features
scaler = StandardScaler()
scaled_data = scaler.fit_transform(numerical_features)
# Define the Perceptron model
input_dim = scaled_data.shape[1]
model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(input_dim,)),
tf.keras.layers.Dense(hidden_units, activation='relu'),
tf.keras.layers.Dense(1) # Output layer for regression
])
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
return model, scaled_data
def train_model(df):
model, scaled_data = perceptron_build_model(df)
epochs = 100
batch_size = 32
model.fit(scaled_data, scaled_data, epochs=epochs, batch_size=batch_size, verbose=1)