import pythonbible as bible import random, argparse, datetime import pandas as pd def generate_readplan(start_date): book_groups = bible.BOOK_GROUPS reading_list = [] # Drop OLD TESTAMENT and NEW TESTAMENT from book_groups all_books = list(set(book_groups['Old Testament'])) + list(set(book_groups['New Testament'])) book_groups.pop('Old Testament', 'New Testament') # Randomly order book groups book_groups = dict(sorted(book_groups.items(), key=lambda x: random.random())) for group in book_groups.keys(): reading_list.extend(book_groups[group]) reading_list = list(set(reading_list)) # Find missing books in reading_list missing_books = list(set(all_books) - set(reading_list)) # Randomly order missing books missing_books = sorted(missing_books, key=lambda x: random.random()) # Insert missing books in reading_list for book in missing_books: reading_list.insert(random.randint(0, len(reading_list)), book) total_chapters = sum([bible.get_number_of_chapters(reading_list[i]) for i in range(len(reading_list))]) chapters_per_day = total_chapters // 365 + 1 # Create a dataframe with each book, each chapter, and number of verses df = pd.DataFrame(columns=['Book', 'Chapters', 'Verses']) for book in reading_list: df = pd.concat([df, pd.DataFrame({'Book': [book.title], 'Chapters': [bible.get_number_of_chapters(book)]})]) df = pd.DataFrame(columns=['Book', 'Chapters', 'Verses']) for book in reading_list: df = pd.concat([df, pd.DataFrame({'Book': [book.title], 'Chapters': [bible.get_number_of_chapters(book)]})]) # Generate a reading plan, by reading 4 chapters per day, until the reading list is empty. Read 4 chapters per day reading_plan_df = pd.DataFrame(columns=['Date', 'Book', 'Start Chapter', 'End Chapter']) date = pd.Timestamp(start_date) # Start date for row in df.iterrows(): book = row[1]['Book'] chapters = row[1]['Chapters'] start_chapter = 1 end_chapter = min(chapters, start_chapter + chapters_per_day - 1) while start_chapter <= chapters: reading_plan_df = pd.concat([reading_plan_df, pd.DataFrame({'Date': [date], 'Book': [book], 'Start Chapter': [start_chapter], 'End Chapter': [end_chapter]})]) date += pd.Timedelta(days=1) start_chapter = end_chapter + 1 end_chapter = min(chapters, start_chapter + chapters_per_day - 1) # Set date as index reading_plan_df.set_index('Date', inplace=True) return reading_plan_df if __name__ == '__main__': # Add start date as argument parser = argparse.ArgumentParser() parser.add_argument('--start_date', help='Start date of the reading plan (YYYY-MM-DD)', required=False, type=str) args = parser.parse_args() if not args.start_date: args.start_date = datetime.datetime.now().strftime('%Y-%m-%d') reading_list = generate_readplan(start_date=args.start_date) reading_list.to_csv(f'reading_plan_{args.start_date}.csv', index=True)