# Using plotly import plotly.graph_objects as go import random, argparse, os, datetime import pandas as pd """ This script reads a CSV file with the following columns: start,end,name,order,comment,X0,LR - name: Name of the function or location (Required) - start: Start address of the function or location (Required) - end: End address of the function or location (Required) Then it generates a memory map of the regions, and outputs an HTML file with the memory map. """ class MemoryDrawer(): def __init__(self, input): """ If this file is run manually, will take an input .csv path and output a memory map in .html format. Args: (Required) input (str): Path to the input .csv file (Optional) output (str): Path to the output .html file """ if isinstance(input, str): if os.path.isfile(input): output = f'{os.path.splitext(os.path.basename(input))[0]}_memory_drawer' data = MemoryDrawer.read_data(pd.read_csv(input)) else: raise ValueError('Input string must be a path to a .csv file') elif isinstance(input, pd.DataFrame): now = datetime.datetime.now() output = f'{now.strftime("%Y-%m-%d_%H-%M-%S")}_memory_drawer' data = MemoryDrawer.read_data(input) else: raise ValueError('Input must be a path to a .csv file or a pandas DataFrame') fig = MemoryDrawer.draw_diagram(data) MemoryDrawer.write_output(fig, output) def read_data(data): def _convert_to_int(value): try: if isinstance(value, str) and value.startswith('0x'): return int(value, 16) else: return int(value) except ValueError: return value data['start'] = data['start'].apply(_convert_to_int) data['end'] = data['end'].apply(_convert_to_int) data['size'] = data['end'] - data['start'] #data.sort_values(by=['size'], inplace=True, ascending=False) data.sort_values(by=['start', 'size'], inplace=True, ascending=True) # Inverse the order of the data data.reset_index(drop=True, inplace=True) data['overlap'] = False data['index'] = data.index for i, row in data.iterrows(): data.at[i, 'overlap'] = False data.at[i, 'partial_overlap'] = False # Annotate rows that fully overlap the current row temp = data.loc[(data['start'] <= row['start']) & (data['end'] >= row['end'])] if temp.shape[0] > 1: data.at[i, 'overlap'] = True data.at[i, 'overlapped_by'] = ','.join(temp['index'].astype(str).to_list()) # Annotate rows that partially overlap the current row (from start, but not to end) temp = data.loc[(data['start'] <= row['start']) & (data['end'] < row['end']) & (data['end'] >= row['start'])] if temp.shape[0] > 1: data.at[i, 'partial_overlap'] = "Bottom" data.at[i, 'partial_overlapped_by'] = ','.join(temp['index'].astype(str).to_list()) # Annotate rows that partially overlap the current row (from end, but not to start) temp = data.loc[(data['start'] > row['start']) & (data['end'] >= row['end']) & (data['start'] <= row['end'])] if temp.shape[0] > 1: data.at[i, 'partial_overlap'] = "Top" data.at[i, 'partial_overlapped_by'] = ','.join(temp['index'].astype(str).to_list()) # Also annotate which regions this row is overlapping temp = data.loc[(data['start'] >= row['start']) & (data['end'] <= row['end'])] if temp.shape[0] > 1: data.at[i, 'overlap'] = True data.at[i, 'overlapping'] = ','.join(temp['index'].astype(str).to_list()) # Send warnings if sizes are negative if (data['size'] < 0).any(): print(f'Warning: Negative sizes detected at indices {data[data["size"] < 0].index}') return data def draw_diagram(data, vertical_gap_percentage=0.08, horizontal_gap=0.1): tickpointers = [] labels = pd.DataFrame() def random_color(): return f'#{random.randint(0, 0xFFFFFF):06x}' fig = go.Figure() fig.update_layout(font=dict(family="Courier New, monospace")) fig.update_layout( plot_bgcolor='#FFFFFF', ) for i, d in data.iterrows(): fillcolor = random_color() data.at[i, 'fillcolor'] = fillcolor # Set base x values. Width of the rectangle. x0 = 1 x1 = 6 # Set base y values. Height of the rectangle. y0 = d['index'] y1 = d['index']+1 if d['overlap'] == True: # Row is overlapping the current row if pd.notna(d['overlapping']): y0 = sorted(map(int, d['overlapping'].split(',')))[0] y1 = sorted(map(int, d['overlapping'].split(',')))[-1] + 1 if pd.notna(d['overlapped_by']): y0 = y0 + vertical_gap_percentage y1 = y1 - vertical_gap_percentage x0 = x0 + horizontal_gap x1 = x1 - horizontal_gap if d['partial_overlap'] == "Bottom": if pd.notna(d['partial_overlapped_by']): y0 = y0 + 0.25 + (0.6**len(d['partial_overlapped_by'].split(','))) #x0 = x0 + horizontal_gap #x1 = x1 - horizontal_gap if d['partial_overlap'] == "Top": if pd.notna(d['partial_overlapped_by']): y1 = y1 - (0.6**len(d['partial_overlapped_by'].split(','))) #x0 = x0 + horizontal_gap #x1 = x1 - horizontal_gap fig.add_shape( type="rect", x0=x0, x1=x1, y0=y0+vertical_gap_percentage, y1=y1-vertical_gap_percentage, line=dict(width=1), fillcolor=fillcolor, opacity=0.4, layer="below", ) ### Add middle text fig.add_trace(go.Scatter ( x=[(x0+x1)/2], y=[i+0.5], text=d['name'], mode="text", textposition="middle center", name=d['name'], marker=dict( color=fillcolor, ), )) ### Add top-left text with d['end'] # Overlapped to the right, to make it more readable if pd.notna(d['overlapped_by']): fig.add_trace(go.Scatter ( x=[(x1-0.24+horizontal_gap)], y=[y1-0.16], text=hex(d['end']), mode="text", textposition="middle center", marker=dict( color=fillcolor, ), showlegend=False, )) # Add bottom-left text with d['end'] fig.add_trace(go.Scatter ( x=[(x1-0.24+horizontal_gap)], y=[y0+0.14], text=hex(d['start']), mode="text", textposition="middle center", marker=dict( color=fillcolor, ), showlegend=False, )) else: fig.add_trace(go.Scatter ( x=[(x0+0.14+horizontal_gap)], y=[y1-0.16], text=hex(d['end']), mode="text", textposition="middle center", marker=dict( color=fillcolor, ), showlegend=False, )) ### Add bottom-left text with d['end'] fig.add_trace(go.Scatter ( x=[(x0+0.14+horizontal_gap)], y=[y0+0.14], text=hex(d['start']), mode="text", textposition="middle center", marker=dict( color=fillcolor, ), showlegend=False, )) fig.update_xaxes( range=[0, 7], tickvals=[0, 1, 2, 3, 4, 5, 6, 7], ) start_values = data['start'].sort_values() end_values = data['end'].sort_values() labels = [] for i, d in data.iterrows(): if i == 0: labels.append(f'{hex(start_values.iloc[i])}') elif i == len(data)-1: labels.append(f'{hex(end_values.iloc[i])}') else: labels.append(f'{hex(start_values.iloc[i])}
{hex(end_values.iloc[i-1])}') tickpointers = [i for i in range(len(data))] fig.update_yaxes( # tickvals=[i for i in range(len(data)+1)], tickvals = tickpointers, #ticktext= labels, # Adds labels to the left-hand side of the graph griddash="longdashdot", gridwidth=0, gridcolor="black", showgrid=False, showticklabels=False, autorange='reversed', ) fig.update_xaxes( showgrid=False, showticklabels=False, ) fig.update_layout( width=1200, height=1200, autosize=True, margin=dict(l=200, r=20, t=20, b=20), font=dict( size=18, ), legend_title_text="Function/Locations", ) return fig def write_output(fig, output_file): fig.write_html(f'{output_file}.html') if __name__ == '__main__': argparser = argparse.ArgumentParser() argparser.add_argument('--input', help='Input CSV file path', required=True, type=str) args = argparser.parse_args() MemoryDrawer(args.input)