Updating memory drawer to allow both files and pd dataframes
This commit is contained in:
parent
2e7700c54c
commit
2f300eebe7
15
debug.py
Normal file → Executable file
15
debug.py
Normal file → Executable file
@ -1,11 +1,18 @@
|
||||
"""
|
||||
Sample file for debugging purposes and examples
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
#from herrewebpy.bioinformatics import sequence_alignment
|
||||
#sequence_alignment.SequenceAlignment(['aa', 'bb', 'cc'],['bb','aa','cc'], ['1','2','3'], ['1','2','3'])
|
||||
|
||||
#from herrewebpy.firmware_forensics import function_extractor
|
||||
#function_extractor.FunctionExtractor('', 'ARM_AARCH64')
|
||||
|
||||
#from herrewebpy.christianity import readplan_generator
|
||||
#readplan_generator.generate_readplan()
|
||||
# from herrewebpy.christianity import readplan_generator
|
||||
# readplan_generator.generate_readplan()
|
||||
|
||||
from herrewebpy.firmware_forensics import memory_drawer
|
||||
memory_drawer.MemoryDrawer('sample_data/csv/stack_and_functions.csv')
|
||||
from herrewebpy.firmware_forensics.memory_drawer import MemoryDrawer
|
||||
df = pd.read_csv('sample_data/csv/stack_and_functions.csv')
|
||||
MemoryDrawer(df)
|
||||
|
0
docs/conf.py
Normal file → Executable file
0
docs/conf.py
Normal file → Executable file
0
examples/bioinformatics.ipynb
Normal file → Executable file
0
examples/bioinformatics.ipynb
Normal file → Executable file
0
herrewebpy/__init__.py
Normal file → Executable file
0
herrewebpy/__init__.py
Normal file → Executable file
0
herrewebpy/bioinformatics/__init__.py
Normal file → Executable file
0
herrewebpy/bioinformatics/__init__.py
Normal file → Executable file
0
herrewebpy/bioinformatics/sequence_alignment.py
Normal file → Executable file
0
herrewebpy/bioinformatics/sequence_alignment.py
Normal file → Executable file
0
herrewebpy/christianity/__init__.py
Normal file → Executable file
0
herrewebpy/christianity/__init__.py
Normal file → Executable file
7
herrewebpy/christianity/readplan_generator.py
Normal file → Executable file
7
herrewebpy/christianity/readplan_generator.py
Normal file → Executable file
@ -30,7 +30,12 @@ def generate_readplan(start_date):
|
||||
total_chapters = sum([bible.get_number_of_chapters(reading_list[i]) for i in range(len(reading_list))])
|
||||
chapters_per_day = total_chapters // 365 + 1
|
||||
|
||||
df = pd.DataFrame(columns=['Book', 'Chapters'])
|
||||
# Create a dataframe with each book, each chapter, and number of verses
|
||||
df = pd.DataFrame(columns=['Book', 'Chapters', 'Verses'])
|
||||
for book in reading_list:
|
||||
df = pd.concat([df, pd.DataFrame({'Book': [book.title], 'Chapters': [bible.get_number_of_chapters(book)]})])
|
||||
|
||||
df = pd.DataFrame(columns=['Book', 'Chapters', 'Verses'])
|
||||
for book in reading_list:
|
||||
df = pd.concat([df, pd.DataFrame({'Book': [book.title], 'Chapters': [bible.get_number_of_chapters(book)]})])
|
||||
|
||||
|
0
herrewebpy/config/trains/credentials.json
Normal file → Executable file
0
herrewebpy/config/trains/credentials.json
Normal file → Executable file
0
herrewebpy/firmware_forensics/__init__.py
Normal file → Executable file
0
herrewebpy/firmware_forensics/__init__.py
Normal file → Executable file
0
herrewebpy/firmware_forensics/function_extractor.py
Normal file → Executable file
0
herrewebpy/firmware_forensics/function_extractor.py
Normal file → Executable file
487
herrewebpy/firmware_forensics/memory_drawer.py
Normal file → Executable file
487
herrewebpy/firmware_forensics/memory_drawer.py
Normal file → Executable file
@ -1,7 +1,6 @@
|
||||
# Using plotly
|
||||
import plotly.graph_objects as go
|
||||
import random, argparse
|
||||
import numpy as np
|
||||
import random, argparse, os, datetime
|
||||
import pandas as pd
|
||||
|
||||
"""
|
||||
@ -14,261 +13,283 @@ This script reads a CSV file with the following columns: start,end,name,order,co
|
||||
Then it generates a memory map of the regions, and outputs an HTML file with the memory map.
|
||||
"""
|
||||
|
||||
def read_data(input_file):
|
||||
data = pd.read_csv(input_file)
|
||||
class MemoryDrawer():
|
||||
|
||||
def convert_to_int(value):
|
||||
try:
|
||||
if isinstance(value, str) and value.startswith('0x'):
|
||||
return int(value, 16)
|
||||
def __init__(self, input):
|
||||
"""
|
||||
If this file is run manually, will take an input .csv path and output a memory map in .html format.
|
||||
|
||||
Args:
|
||||
(Required) input (str): Path to the input .csv file
|
||||
(Optional) output (str): Path to the output .html file
|
||||
"""
|
||||
if isinstance(input, str):
|
||||
if os.path.isfile(input):
|
||||
output = f'{os.path.splitext(os.path.basename(input))[0]}_memory_drawer'
|
||||
data = MemoryDrawer.read_data(pd.read_csv(input))
|
||||
else:
|
||||
return int(value)
|
||||
except ValueError:
|
||||
return value
|
||||
|
||||
data['start'] = data['start'].apply(convert_to_int)
|
||||
data['end'] = data['end'].apply(convert_to_int)
|
||||
data['size'] = data['end'] - data['start']
|
||||
|
||||
#data.sort_values(by=['size'], inplace=True, ascending=False)
|
||||
data.sort_values(by=['start', 'size'], inplace=True, ascending=True)
|
||||
|
||||
# Inverse the order of the data
|
||||
data.reset_index(drop=True, inplace=True)
|
||||
|
||||
data['overlap'] = False
|
||||
data['index'] = data.index
|
||||
|
||||
for i, row in data.iterrows():
|
||||
data.at[i, 'overlap'] = False
|
||||
data.at[i, 'partial_overlap'] = False
|
||||
|
||||
# Annotate rows that fully overlap the current row
|
||||
temp = data.loc[(data['start'] <= row['start']) & (data['end'] >= row['end'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'overlap'] = True
|
||||
data.at[i, 'overlapped_by'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
# Annotate rows that partially overlap the current row (from start, but not to end)
|
||||
temp = data.loc[(data['start'] <= row['start']) & (data['end'] < row['end']) & (data['end'] >= row['start'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'partial_overlap'] = "Bottom"
|
||||
data.at[i, 'partial_overlapped_by'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
# Annotate rows that partially overlap the current row (from end, but not to start)
|
||||
temp = data.loc[(data['start'] > row['start']) & (data['end'] >= row['end']) & (data['start'] <= row['end'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'partial_overlap'] = "Top"
|
||||
data.at[i, 'partial_overlapped_by'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
# Also annotate which regions this row is overlapping
|
||||
temp = data.loc[(data['start'] >= row['start']) & (data['end'] <= row['end'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'overlap'] = True
|
||||
data.at[i, 'overlapping'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
# Send warnings if sizes are negative
|
||||
if (data['size'] < 0).any():
|
||||
print(f'Warning: Negative sizes detected at indices {data[data["size"] < 0].index}')
|
||||
|
||||
return data
|
||||
raise ValueError('Input string must be a path to a .csv file')
|
||||
elif isinstance(input, pd.DataFrame):
|
||||
now = datetime.datetime.now()
|
||||
output = f'{now.strftime("%Y-%m-%d_%H-%M-%S")}_memory_drawer'
|
||||
data = MemoryDrawer.read_data(input)
|
||||
else:
|
||||
raise ValueError('Input must be a path to a .csv file or a pandas DataFrame')
|
||||
|
||||
|
||||
def draw_diagram(data, vertical_gap_percentage=0.08, horizontal_gap=0.1):
|
||||
tickpointers = []
|
||||
labels = pd.DataFrame()
|
||||
fig = MemoryDrawer.draw_diagram(data)
|
||||
MemoryDrawer.write_output(fig, output)
|
||||
|
||||
def random_color():
|
||||
return f'#{random.randint(0, 0xFFFFFF):06x}'
|
||||
|
||||
fig = go.Figure()
|
||||
fig.update_layout(font=dict(family="Courier New, monospace"))
|
||||
def read_data(data):
|
||||
|
||||
fig.update_layout(
|
||||
plot_bgcolor='#FFFFFF',
|
||||
)
|
||||
def _convert_to_int(value):
|
||||
try:
|
||||
if isinstance(value, str) and value.startswith('0x'):
|
||||
return int(value, 16)
|
||||
else:
|
||||
return int(value)
|
||||
except ValueError:
|
||||
return value
|
||||
|
||||
for i, d in data.iterrows():
|
||||
fillcolor = random_color()
|
||||
data.at[i, 'fillcolor'] = fillcolor
|
||||
data['start'] = data['start'].apply(_convert_to_int)
|
||||
data['end'] = data['end'].apply(_convert_to_int)
|
||||
data['size'] = data['end'] - data['start']
|
||||
|
||||
# Set base x values. Width of the rectangle.
|
||||
x0 = 1
|
||||
x1 = 6
|
||||
#data.sort_values(by=['size'], inplace=True, ascending=False)
|
||||
data.sort_values(by=['start', 'size'], inplace=True, ascending=True)
|
||||
|
||||
# Set base y values. Height of the rectangle.
|
||||
y0 = d['index']
|
||||
y1 = d['index']+1
|
||||
# Inverse the order of the data
|
||||
data.reset_index(drop=True, inplace=True)
|
||||
|
||||
if d['overlap'] == True:
|
||||
# Row is overlapping the current row
|
||||
if pd.notna(d['overlapping']):
|
||||
y0 = sorted(map(int, d['overlapping'].split(',')))[0]
|
||||
y1 = sorted(map(int, d['overlapping'].split(',')))[-1] + 1
|
||||
data['overlap'] = False
|
||||
data['index'] = data.index
|
||||
|
||||
if pd.notna(d['overlapped_by']):
|
||||
y0 = y0 + vertical_gap_percentage
|
||||
y1 = y1 - vertical_gap_percentage
|
||||
x0 = x0 + horizontal_gap
|
||||
x1 = x1 - horizontal_gap
|
||||
for i, row in data.iterrows():
|
||||
data.at[i, 'overlap'] = False
|
||||
data.at[i, 'partial_overlap'] = False
|
||||
|
||||
if d['partial_overlap'] == "Bottom":
|
||||
if pd.notna(d['partial_overlapped_by']):
|
||||
y0 = y0 + 0.25 + (0.6**len(d['partial_overlapped_by'].split(',')))
|
||||
#x0 = x0 + horizontal_gap
|
||||
#x1 = x1 - horizontal_gap
|
||||
# Annotate rows that fully overlap the current row
|
||||
temp = data.loc[(data['start'] <= row['start']) & (data['end'] >= row['end'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'overlap'] = True
|
||||
data.at[i, 'overlapped_by'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
if d['partial_overlap'] == "Top":
|
||||
if pd.notna(d['partial_overlapped_by']):
|
||||
y1 = y1 - (0.6**len(d['partial_overlapped_by'].split(',')))
|
||||
#x0 = x0 + horizontal_gap
|
||||
#x1 = x1 - horizontal_gap
|
||||
# Annotate rows that partially overlap the current row (from start, but not to end)
|
||||
temp = data.loc[(data['start'] <= row['start']) & (data['end'] < row['end']) & (data['end'] >= row['start'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'partial_overlap'] = "Bottom"
|
||||
data.at[i, 'partial_overlapped_by'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
fig.add_shape(
|
||||
type="rect",
|
||||
x0=x0,
|
||||
x1=x1,
|
||||
y0=y0+vertical_gap_percentage,
|
||||
y1=y1-vertical_gap_percentage,
|
||||
line=dict(width=1),
|
||||
fillcolor=fillcolor,
|
||||
opacity=0.4,
|
||||
layer="below",
|
||||
# Annotate rows that partially overlap the current row (from end, but not to start)
|
||||
temp = data.loc[(data['start'] > row['start']) & (data['end'] >= row['end']) & (data['start'] <= row['end'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'partial_overlap'] = "Top"
|
||||
data.at[i, 'partial_overlapped_by'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
# Also annotate which regions this row is overlapping
|
||||
temp = data.loc[(data['start'] >= row['start']) & (data['end'] <= row['end'])]
|
||||
if temp.shape[0] > 1:
|
||||
data.at[i, 'overlap'] = True
|
||||
data.at[i, 'overlapping'] = ','.join(temp['index'].astype(str).to_list())
|
||||
|
||||
# Send warnings if sizes are negative
|
||||
if (data['size'] < 0).any():
|
||||
print(f'Warning: Negative sizes detected at indices {data[data["size"] < 0].index}')
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def draw_diagram(data, vertical_gap_percentage=0.08, horizontal_gap=0.1):
|
||||
tickpointers = []
|
||||
labels = pd.DataFrame()
|
||||
|
||||
def random_color():
|
||||
return f'#{random.randint(0, 0xFFFFFF):06x}'
|
||||
|
||||
fig = go.Figure()
|
||||
fig.update_layout(font=dict(family="Courier New, monospace"))
|
||||
|
||||
fig.update_layout(
|
||||
plot_bgcolor='#FFFFFF',
|
||||
)
|
||||
|
||||
### Add middle text
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x0+x1)/2],
|
||||
y=[i+0.5],
|
||||
text=d['name'],
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
name=d['name'],
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
for i, d in data.iterrows():
|
||||
fillcolor = random_color()
|
||||
data.at[i, 'fillcolor'] = fillcolor
|
||||
|
||||
# Set base x values. Width of the rectangle.
|
||||
x0 = 1
|
||||
x1 = 6
|
||||
|
||||
# Set base y values. Height of the rectangle.
|
||||
y0 = d['index']
|
||||
y1 = d['index']+1
|
||||
|
||||
if d['overlap'] == True:
|
||||
# Row is overlapping the current row
|
||||
if pd.notna(d['overlapping']):
|
||||
y0 = sorted(map(int, d['overlapping'].split(',')))[0]
|
||||
y1 = sorted(map(int, d['overlapping'].split(',')))[-1] + 1
|
||||
|
||||
if pd.notna(d['overlapped_by']):
|
||||
y0 = y0 + vertical_gap_percentage
|
||||
y1 = y1 - vertical_gap_percentage
|
||||
x0 = x0 + horizontal_gap
|
||||
x1 = x1 - horizontal_gap
|
||||
|
||||
if d['partial_overlap'] == "Bottom":
|
||||
if pd.notna(d['partial_overlapped_by']):
|
||||
y0 = y0 + 0.25 + (0.6**len(d['partial_overlapped_by'].split(',')))
|
||||
#x0 = x0 + horizontal_gap
|
||||
#x1 = x1 - horizontal_gap
|
||||
|
||||
if d['partial_overlap'] == "Top":
|
||||
if pd.notna(d['partial_overlapped_by']):
|
||||
y1 = y1 - (0.6**len(d['partial_overlapped_by'].split(',')))
|
||||
#x0 = x0 + horizontal_gap
|
||||
#x1 = x1 - horizontal_gap
|
||||
|
||||
fig.add_shape(
|
||||
type="rect",
|
||||
x0=x0,
|
||||
x1=x1,
|
||||
y0=y0+vertical_gap_percentage,
|
||||
y1=y1-vertical_gap_percentage,
|
||||
line=dict(width=1),
|
||||
fillcolor=fillcolor,
|
||||
opacity=0.4,
|
||||
layer="below",
|
||||
)
|
||||
|
||||
### Add middle text
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x0+x1)/2],
|
||||
y=[i+0.5],
|
||||
text=d['name'],
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
name=d['name'],
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
))
|
||||
|
||||
### Add top-left text with d['end']
|
||||
# Overlapped to the right, to make it more readable
|
||||
if pd.notna(d['overlapped_by']):
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x1-0.24+horizontal_gap)],
|
||||
y=[y1-0.16],
|
||||
text=hex(d['end']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
|
||||
# Add bottom-left text with d['end']
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x1-0.24+horizontal_gap)],
|
||||
y=[y0+0.14],
|
||||
text=hex(d['start']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
else:
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x0+0.14+horizontal_gap)],
|
||||
y=[y1-0.16],
|
||||
text=hex(d['end']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
|
||||
### Add bottom-left text with d['end']
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x0+0.14+horizontal_gap)],
|
||||
y=[y0+0.14],
|
||||
text=hex(d['start']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
|
||||
fig.update_xaxes(
|
||||
range=[0, 7],
|
||||
tickvals=[0, 1, 2, 3, 4, 5, 6, 7],
|
||||
)
|
||||
|
||||
start_values = data['start'].sort_values()
|
||||
end_values = data['end'].sort_values()
|
||||
|
||||
labels = []
|
||||
|
||||
for i, d in data.iterrows():
|
||||
if i == 0:
|
||||
labels.append(f'{hex(start_values.iloc[i])}')
|
||||
elif i == len(data)-1:
|
||||
labels.append(f'{hex(end_values.iloc[i])}')
|
||||
else:
|
||||
labels.append(f'{hex(start_values.iloc[i])}<br>{hex(end_values.iloc[i-1])}')
|
||||
|
||||
tickpointers = [i for i in range(len(data))]
|
||||
|
||||
fig.update_yaxes(
|
||||
# tickvals=[i for i in range(len(data)+1)],
|
||||
tickvals = tickpointers,
|
||||
#ticktext= labels, # Adds labels to the left-hand side of the graph
|
||||
griddash="longdashdot",
|
||||
gridwidth=0,
|
||||
gridcolor="black",
|
||||
showgrid=False,
|
||||
showticklabels=False,
|
||||
autorange='reversed',
|
||||
)
|
||||
|
||||
fig.update_xaxes(
|
||||
showgrid=False,
|
||||
showticklabels=False,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
width=1200,
|
||||
height=1200,
|
||||
autosize=True,
|
||||
margin=dict(l=200, r=20, t=20, b=20),
|
||||
font=dict(
|
||||
size=18,
|
||||
),
|
||||
))
|
||||
legend_title_text="Function/Locations",
|
||||
)
|
||||
|
||||
### Add top-left text with d['end']
|
||||
# Overlapped to the right, to make it more readable
|
||||
if pd.notna(d['overlapped_by']):
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x1-0.24+horizontal_gap)],
|
||||
y=[y1-0.16],
|
||||
text=hex(d['end']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
return fig
|
||||
|
||||
# Add bottom-left text with d['end']
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x1-0.24+horizontal_gap)],
|
||||
y=[y0+0.14],
|
||||
text=hex(d['start']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
else:
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x0+0.14+horizontal_gap)],
|
||||
y=[y1-0.16],
|
||||
text=hex(d['end']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
def write_output(fig, output_file):
|
||||
fig.write_html(f'{output_file}.html')
|
||||
|
||||
### Add bottom-left text with d['end']
|
||||
fig.add_trace(go.Scatter
|
||||
(
|
||||
x=[(x0+0.14+horizontal_gap)],
|
||||
y=[y0+0.14],
|
||||
text=hex(d['start']),
|
||||
mode="text",
|
||||
textposition="middle center",
|
||||
marker=dict(
|
||||
color=fillcolor,
|
||||
),
|
||||
showlegend=False,
|
||||
))
|
||||
|
||||
fig.update_xaxes(
|
||||
range=[0, 7],
|
||||
tickvals=[0, 1, 2, 3, 4, 5, 6, 7],
|
||||
)
|
||||
|
||||
start_values = data['start'].sort_values()
|
||||
end_values = data['end'].sort_values()
|
||||
|
||||
labels = []
|
||||
|
||||
for i, d in data.iterrows():
|
||||
if i == 0:
|
||||
labels.append(f'{hex(start_values.iloc[i])}')
|
||||
elif i == len(data)-1:
|
||||
labels.append(f'{hex(end_values.iloc[i])}')
|
||||
else:
|
||||
labels.append(f'{hex(start_values.iloc[i])}<br>{hex(end_values.iloc[i-1])}')
|
||||
|
||||
tickpointers = [i for i in range(len(data))]
|
||||
|
||||
fig.update_yaxes(
|
||||
# tickvals=[i for i in range(len(data)+1)],
|
||||
tickvals = tickpointers,
|
||||
#ticktext= labels, # Adds labels to the left-hand side of the graph
|
||||
griddash="longdashdot",
|
||||
gridwidth=0,
|
||||
gridcolor="black",
|
||||
showgrid=False,
|
||||
showticklabels=False,
|
||||
autorange='reversed',
|
||||
)
|
||||
|
||||
fig.update_xaxes(
|
||||
showgrid=False,
|
||||
showticklabels=False,
|
||||
)
|
||||
|
||||
fig.update_layout(
|
||||
width=1200,
|
||||
height=1200,
|
||||
autosize=True,
|
||||
margin=dict(l=200, r=20, t=20, b=20),
|
||||
font=dict(
|
||||
size=18,
|
||||
),
|
||||
legend_title_text="Function/Locations",
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
def write_output(fig, output_file):
|
||||
fig.write_html(f'{output_file}.html')
|
||||
|
||||
if __name__ == '__main__':
|
||||
argparser = argparse.ArgumentParser()
|
||||
argparser.add_argument('--input', help='Input CSV file path', required=True, type=str)
|
||||
argparser.add_argument('--output', help='Output HTML filename', required=False, type=str)
|
||||
args = argparser.parse_args()
|
||||
|
||||
if not args.output:
|
||||
args.output = 'memory_drawer'
|
||||
|
||||
data = read_data(args.input)
|
||||
fig = draw_diagram(data)
|
||||
write_output(fig, args.output)
|
||||
MemoryDrawer(args.input)
|
0
herrewebpy/mlops/__init__.py
Normal file → Executable file
0
herrewebpy/mlops/__init__.py
Normal file → Executable file
0
herrewebpy/mlops/anomaly_scoring.py
Normal file → Executable file
0
herrewebpy/mlops/anomaly_scoring.py
Normal file → Executable file
0
herrewebpy/trains/__init__.py
Normal file → Executable file
0
herrewebpy/trains/__init__.py
Normal file → Executable file
0
herrewebpy/trains/ns_api.py
Normal file → Executable file
0
herrewebpy/trains/ns_api.py
Normal file → Executable file
0
readthedocs.yml
Normal file → Executable file
0
readthedocs.yml
Normal file → Executable file
0
requirements.txt
Normal file → Executable file
0
requirements.txt
Normal file → Executable file
0
sample_data/csv/logdata.csv
Normal file → Executable file
0
sample_data/csv/logdata.csv
Normal file → Executable file
Can't render this file because it is too large.
|
0
sample_data/csv/stack_and_functions.csv
Normal file → Executable file
0
sample_data/csv/stack_and_functions.csv
Normal file → Executable file
0
sample_data/firmwares/S7_BL31.bin
Normal file → Executable file
0
sample_data/firmwares/S7_BL31.bin
Normal file → Executable file
Loading…
x
Reference in New Issue
Block a user