Cheminformatics/Other/ICT_Sleep_Data_Case_Session.html

361 lines
823 KiB
HTML
Raw Normal View History

2022-12-04 20:38:24 +00:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Jonathan Herrewijnen" />
<meta name="date" content="2018-09-17" />
<title>Case Study Sleep</title>
<script src="data:application/x-javascript;base64,LyohIGpRdWVyeSB2MS4xMS4zIHwgKGMpIDIwMDUsIDIwMTUgalF1ZXJ5IEZvdW5kYXRpb24sIEluYy4gfCBqcXVlcnkub3JnL2xpY2Vuc2UgKi8KIWZ1bmN0aW9uKGEsYil7Im9iamVjdCI9PXR5cGVvZiBtb2R1bGUmJiJvYmplY3QiPT10eXBlb2YgbW9kdWxlLmV4cG9ydHM/bW9kdWxlLmV4cG9ydHM9YS5kb2N1bWVudD9iKGEsITApOmZ1bmN0aW9uKGEpe2lmKCFhLmRvY3VtZW50KXRocm93IG5ldyBFcnJvcigialF1ZXJ5IHJlcXVpcmVzIGEgd2luZG93IHdpdGggYSBkb2N1bWVudCIpO3JldHVybiBiKGEpfTpiKGEpfSgidW5kZWZpbmVkIiE9dHlwZW9mIHdpbmRvdz93aW5kb3c6dGhpcyxmdW5jdGlvbihhLGIpe3ZhciBjPVtdLGQ9Yy5zbGljZSxlPWMuY29uY2F0LGY9Yy5wdXNoLGc9Yy5pbmRleE9mLGg9e30saT1oLnRvU3RyaW5nLGo9aC5oYXNPd25Qcm9wZXJ0eSxrPXt9LGw9IjEuMTEuMyIsbT1mdW5jdGlvbihhLGIpe3JldHVybiBuZXcgbS5mbi5pbml0KGEsYil9LG49L15bXHNcdUZFRkZceEEwXSt8W1xzXHVGRUZGXHhBMF0rJC9nLG89L14tbXMtLyxwPS8tKFtcZGEtel0pL2dpLHE9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYi50b1VwcGVyQ2FzZSgpfTttLmZuPW0ucHJvdG90eXBlPXtqcXVlcnk6bCxjb25zdHJ1Y3RvcjptLHNlbGVjdG9yOiIiLGxlbmd0aDowLHRvQXJyYXk6ZnVuY3Rpb24oKXtyZXR1cm4gZC5jYWxsKHRoaXMpfSxnZXQ6ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGwhPWE/MD5hP3RoaXNbYSt0aGlzLmxlbmd0aF06dGhpc1thXTpkLmNhbGwodGhpcyl9LHB1c2hTdGFjazpmdW5jdGlvbihhKXt2YXIgYj1tLm1lcmdlKHRoaXMuY29uc3RydWN0b3IoKSxhKTtyZXR1cm4gYi5wcmV2T2JqZWN0PXRoaXMsYi5jb250ZXh0PXRoaXMuY29udGV4dCxifSxlYWNoOmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uZWFjaCh0aGlzLGEsYil9LG1hcDpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sobS5tYXAodGhpcyxmdW5jdGlvbihiLGMpe3JldHVybiBhLmNhbGwoYixjLGIpfSkpfSxzbGljZTpmdW5jdGlvbigpe3JldHVybiB0aGlzLnB1c2hTdGFjayhkLmFwcGx5KHRoaXMsYXJndW1lbnRzKSl9LGZpcnN0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZXEoMCl9LGxhc3Q6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lcSgtMSl9LGVxOmZ1bmN0aW9uKGEpe3ZhciBiPXRoaXMubGVuZ3RoLGM9K2ErKDA+YT9iOjApO3JldHVybiB0aGlzLnB1c2hTdGFjayhjPj0wJiZiPmM/W3RoaXNbY11dOltdKX0sZW5kOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMucHJldk9iamVjdHx8dGhpcy5jb25zdHJ1Y3RvcihudWxsKX0scHVzaDpmLHNvcnQ6Yy5zb3J0LHNwbGljZTpjLnNwbGljZX0sbS5leHRlbmQ9bS5mbi5leHRlbmQ9ZnVuY3Rpb24oKXt2YXIgYSxiLGMsZCxlLGYsZz1hcmd1bWVudHNbMF18fHt9LGg9MSxpPWFyZ3VtZW50cy5sZW5ndGgsaj0hMTtmb3IoImJvb2xlYW4iPT10eXBlb2YgZyYmKGo9ZyxnPWFyZ3VtZW50c1toXXx8e30saCsrKSwib2JqZWN0Ij09dHlwZW9mIGd8fG0uaXNGdW5jdGlvbihnKXx8KGc9e30pLGg9PT1pJiYoZz10aGlzLGgtLSk7aT5oO2grKylpZihudWxsIT0oZT1hcmd1bWVudHNbaF0pKWZvcihkIGluIGUpYT1nW2RdLGM9ZVtkXSxnIT09YyYmKGomJmMmJihtLmlzUGxhaW5PYmplY3QoYyl8fChiPW0uaXNBcnJheShjKSkpPyhiPyhiPSExLGY9YSYmbS5pc0FycmF5KGEpP2E6W10pOmY9YSYmbS5pc1BsYWluT2JqZWN0KGEpP2E6e30sZ1tkXT1tLmV4dGVuZChqLGYsYykpOnZvaWQgMCE9PWMmJihnW2RdPWMpKTtyZXR1cm4gZ30sbS5leHRlbmQoe2V4cGFuZG86ImpRdWVyeSIrKGwrTWF0aC5yYW5kb20oKSkucmVwbGFjZSgvXEQvZywiIiksaXNSZWFkeTohMCxlcnJvcjpmdW5jdGlvbihhKXt0aHJvdyBuZXcgRXJyb3IoYSl9LG5vb3A6ZnVuY3Rpb24oKXt9LGlzRnVuY3Rpb246ZnVuY3Rpb24oYSl7cmV0dXJuImZ1bmN0aW9uIj09PW0udHlwZShhKX0saXNBcnJheTpBcnJheS5pc0FycmF5fHxmdW5jdGlvbihhKXtyZXR1cm4iYXJyYXkiPT09bS50eXBlKGEpfSxpc1dpbmRvdzpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbCE9YSYmYT09YS53aW5kb3d9LGlzTnVtZXJpYzpmdW5jdGlvbihhKXtyZXR1cm4hbS5pc0FycmF5KGEpJiZhLXBhcnNlRmxvYXQoYSkrMT49MH0saXNFbXB0eU9iamVjdDpmdW5jdGlvbihhKXt2YXIgYjtmb3IoYiBpbiBhKXJldHVybiExO3JldHVybiEwfSxpc1BsYWluT2JqZWN0OmZ1bmN0aW9uKGEpe3ZhciBiO2lmKCFhfHwib2JqZWN0IiE9PW0udHlwZShhKXx8YS5ub2RlVHlwZXx8bS5pc1dpbmRvdyhhKSlyZXR1cm4hMTt0cnl7aWYoYS5jb25zdHJ1Y3RvciYmIWouY2FsbChhLCJjb25zdHJ1Y3RvciIpJiYhai5jYWxsKGEuY29uc3RydWN0b3IucHJvdG90eXBlLCJpc1Byb3RvdHlwZU9mIikpcmV0dXJuITF9Y2F0Y2goYyl7cmV0dXJuITF9aWYoay5vd25MYXN0KWZvcihiIGluIGEpcmV0dXJuIGouY2FsbChhLGIpO2ZvcihiIGluIGEpO3JldHVybiB2b2lkIDA9PT1ifHxqLmNhbGwoYSxiKX0sdHlwZTpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbD09YT9hKyIiOiJvYmplY3QiPT10eXBlb2YgYXx8ImZ1bmN0aW9uIj09dHlwZW9mIGE/aFtpLmNhbGwoYSldfHwib2JqZWN0Ijp0eXBlb2YgYX0sZ2xvYmFsRXZhbDpmdW5jdGlvbihiKXtiJiZtLnRyaW0oYikmJihhLmV4ZWNTY3JpcHR8fGZ1bmN0aW9uKGIpe2EuZXZhbC5jYWxsKGEsYil9KShiKX0sY2FtZWxDYXNlOmZ1bmN0aW9uKGEpe3JldHVybiBhLnJlcGxhY2UobywibXMtIikucmVwbGFjZShwLHEpfSxub2RlTmFtZTpmdW5jdGlvbihhLGIpe3JldHVybiBhLm5vZGVOYW1lJiZhLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1iLnRvTG93ZXJDYXNlKCl9LGVhY2g6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGU9MCxmPWEubGVuZ3RoLGc9cihhKTtpZihjKXtpZihnKXtmb3IoO2Y+ZTtlKyspaWYoZD1iLmFwcGx5KGFbZV0sYyksZD09PSExKWJyZWFrfWVsc2UgZm9yKGUgaW4gYSlpZihkPWIuYXBwbHkoYVtlXSxjKSxkPT09ITEpYnJlYWt9ZWxzZSBpZ
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="data:text/css;charset=utf-8,html%7Bfont%2Dfamily%3Asans%2Dserif%3B%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A100%25%3B%2Dms%2Dtext%2Dsize%2Dadjust%3A100%25%7Dbody%7Bmargin%3A0%7Darticle%2Caside%2Cdetails%2Cfigcaption%2Cfigure%2Cfooter%2Cheader%2Chgroup%2Cmain%2Cmenu%2Cnav%2Csection%2Csummary%7Bdisplay%3Ablock%7Daudio%2Ccanvas%2Cprogress%2Cvideo%7Bdisplay%3Ainline%2Dblock%3Bvertical%2Dalign%3Abaseline%7Daudio%3Anot%28%5Bcontrols%5D%29%7Bdisplay%3Anone%3Bheight%3A0%7D%5Bhidden%5D%2Ctemplate%7Bdisplay%3Anone%7Da%7Bbackground%2Dcolor%3Atransparent%7Da%3Aactive%2Ca%3Ahover%7Boutline%3A0%7Dabbr%5Btitle%5D%7Bborder%2Dbottom%3A1px%20dotted%7Db%2Cstrong%7Bfont%2Dweight%3A700%7Ddfn%7Bfont%2Dstyle%3Aitalic%7Dh1%7Bmargin%3A%2E67em%200%3Bfont%2Dsize%3A2em%7Dmark%7Bcolor%3A%23000%3Bbackground%3A%23ff0%7Dsmall%7Bfont%2Dsize%3A80%25%7Dsub%2Csup%7Bposition%3Arelative%3Bfont%2Dsize%3A75%25%3Bline%2Dheight%3A0%3Bvertical%2Dalign%3Abaseline%7Dsup%7Btop%3A%2D%2E5em%7Dsub%7Bbottom%3A%2D%2E25em%7Dimg%7Bborder%3A0%7Dsvg%3Anot%28%3Aroot%29%7Boverflow%3Ahidden%7Dfigure%7Bmargin%3A1em%2040px%7Dhr%7Bheight%3A0%3B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%7Dpre%7Boverflow%3Aauto%7Dcode%2Ckbd%2Cpre%2Csamp%7Bfont%2Dfamily%3Amonospace%2Cmonospace%3Bfont%2Dsize%3A1em%7Dbutton%2Cinput%2Coptgroup%2Cselect%2Ctextarea%7Bmargin%3A0%3Bfont%3Ainherit%3Bcolor%3Ainherit%7Dbutton%7Boverflow%3Avisible%7Dbutton%2Cselect%7Btext%2Dtransform%3Anone%7Dbutton%2Chtml%20input%5Btype%3Dbutton%5D%2Cinput%5Btype%3Dreset%5D%2Cinput%5Btype%3Dsubmit%5D%7B%2Dwebkit%2Dappearance%3Abutton%3Bcursor%3Apointer%7Dbutton%5Bdisabled%5D%2Chtml%20input%5Bdisabled%5D%7Bcursor%3Adefault%7Dbutton%3A%3A%2Dmoz%2Dfocus%2Dinner%2Cinput%3A%3A%2Dmoz%2Dfocus%2Dinner%7Bpadding%3A0%3Bborder%3A0%7Dinput%7Bline%2Dheight%3Anormal%7Dinput%5Btype%3Dcheckbox%5D%2Cinput%5Btype%3Dradio%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%3Bpadding%3A0%7Dinput%5Btype%3Dnumber%5D%3A%3A%2Dwebkit%2Dinner%2Dspin%2Dbutton%2Cinput%5Btype%3Dnumber%5D%3A%3A%2Dwebkit%2Douter%2Dspin%2Dbutton%7Bheight%3Aauto%7Dinput%5Btype%3Dsearch%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3B%2Dwebkit%2Dappearance%3Atextfield%7Dinput%5Btype%3Dsearch%5D%3A%3A%2Dwebkit%2Dsearch%2Dcancel%2Dbutton%2Cinput%5Btype%3Dsearch%5D%3A%3A%2Dwebkit%2Dsearch%2Ddecoration%7B%2Dwebkit%2Dappearance%3Anone%7Dfieldset%7Bpadding%3A%2E35em%20%2E625em%20%2E75em%3Bmargin%3A0%202px%3Bborder%3A1px%20solid%20silver%7Dlegend%7Bpadding%3A0%3Bborder%3A0%7Dtextarea%7Boverflow%3Aauto%7Doptgroup%7Bfont%2Dweight%3A700%7Dtable%7Bborder%2Dspacing%3A0%3Bborder%2Dcollapse%3Acollapse%7Dtd%2Cth%7Bpadding%3A0%7D%40media%20print%7B%2A%2C%3Aafter%2C%3Abefore%7Bcolor%3A%23000%21important%3Btext%2Dshadow%3Anone%21important%3Bbackground%3A0%200%21important%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%21important%3Bbox%2Dshadow%3Anone%21important%7Da%2Ca%3Avisited%7Btext%2Ddecoration%3Aunderline%7Da%5Bhref%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28href%29%20%22%29%22%7Dabbr%5Btitle%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28title%29%20%22%29%22%7Da%5Bhref%5E%3D%22javascript%3A%22%5D%3Aafter%2Ca%5Bhref%5E%3D%22%23%22%5D%3Aafter%7Bcontent%3A%22%22%7Dblockquote%2Cpre%7Bborder%3A1px%20solid%20%23999%3Bpage%2Dbreak%2Dinside%3Aavoid%7Dthead%7Bdisplay%3Atable%2Dheader%2Dgroup%7Dimg%2Ctr%7Bpage%2Dbreak%2Dinside%3Aavoid%7Dimg%7Bmax%2Dwidth%3A100%25%21important%7Dh2%2Ch3%2Cp%7Borphans%3A3%3Bwidows%3A3%7Dh2%2Ch3%7Bpage%2Dbreak%2Dafter%3Aavoid%7D%2Enavbar%7Bdisplay%3Anone%7D%2Ebtn%3E%2Ecaret%2C%2Edropup%3E%2Ebtn%3E%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23000%21important%7D%2Elabel%7Bborder%3A1px%20solid%20%23000%7D%2Etable%7Bborder%2Dcollapse%3Acollapse%21important%7D%2Etable%20td%2C%2Etable%20th%7Bbackground%2Dcolor%3A%23fff%21important%7D%2Etable%2Dbordered%20td%2C%2Etable%2Dbordered%20th%7Bborder%3A1px%20solid%20%23ddd%21important%7D%7D%40font%2Dface%7Bfont%2Dfamily%3A%27Glyphicons%20Halflings%2
<script src="data:application/x-javascript;base64,LyohCiAqIEJvb3RzdHJhcCB2My4zLjUgKGh0dHA6Ly9nZXRib290c3RyYXAuY29tKQogKiBDb3B5cmlnaHQgMjAxMS0yMDE1IFR3aXR0ZXIsIEluYy4KICogTGljZW5zZWQgdW5kZXIgdGhlIE1JVCBsaWNlbnNlCiAqLwppZigidW5kZWZpbmVkIj09dHlwZW9mIGpRdWVyeSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5Iik7K2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0Ijt2YXIgYj1hLmZuLmpxdWVyeS5zcGxpdCgiICIpWzBdLnNwbGl0KCIuIik7aWYoYlswXTwyJiZiWzFdPDl8fDE9PWJbMF0mJjk9PWJbMV0mJmJbMl08MSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5IHZlcnNpb24gMS45LjEgb3IgaGlnaGVyIil9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dmFyIGE9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiYm9vdHN0cmFwIiksYj17V2Via2l0VHJhbnNpdGlvbjoid2Via2l0VHJhbnNpdGlvbkVuZCIsTW96VHJhbnNpdGlvbjoidHJhbnNpdGlvbmVuZCIsT1RyYW5zaXRpb246Im9UcmFuc2l0aW9uRW5kIG90cmFuc2l0aW9uZW5kIix0cmFuc2l0aW9uOiJ0cmFuc2l0aW9uZW5kIn07Zm9yKHZhciBjIGluIGIpaWYodm9pZCAwIT09YS5zdHlsZVtjXSlyZXR1cm57ZW5kOmJbY119O3JldHVybiExfWEuZm4uZW11bGF0ZVRyYW5zaXRpb25FbmQ9ZnVuY3Rpb24oYil7dmFyIGM9ITEsZD10aGlzO2EodGhpcykub25lKCJic1RyYW5zaXRpb25FbmQiLGZ1bmN0aW9uKCl7Yz0hMH0pO3ZhciBlPWZ1bmN0aW9uKCl7Y3x8YShkKS50cmlnZ2VyKGEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCl9O3JldHVybiBzZXRUaW1lb3V0KGUsYiksdGhpc30sYShmdW5jdGlvbigpe2Euc3VwcG9ydC50cmFuc2l0aW9uPWIoKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmKGEuZXZlbnQuc3BlY2lhbC5ic1RyYW5zaXRpb25FbmQ9e2JpbmRUeXBlOmEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCxkZWxlZ2F0ZVR5cGU6YS5zdXBwb3J0LnRyYW5zaXRpb24uZW5kLGhhbmRsZTpmdW5jdGlvbihiKXtyZXR1cm4gYShiLnRhcmdldCkuaXModGhpcyk/Yi5oYW5kbGVPYmouaGFuZGxlci5hcHBseSh0aGlzLGFyZ3VtZW50cyk6dm9pZCAwfX0pfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgYz1hKHRoaXMpLGU9Yy5kYXRhKCJicy5hbGVydCIpO2V8fGMuZGF0YSgiYnMuYWxlcnQiLGU9bmV3IGQodGhpcykpLCJzdHJpbmciPT10eXBlb2YgYiYmZVtiXS5jYWxsKGMpfSl9dmFyIGM9J1tkYXRhLWRpc21pc3M9ImFsZXJ0Il0nLGQ9ZnVuY3Rpb24oYil7YShiKS5vbigiY2xpY2siLGMsdGhpcy5jbG9zZSl9O2QuVkVSU0lPTj0iMy4zLjUiLGQuVFJBTlNJVElPTl9EVVJBVElPTj0xNTAsZC5wcm90b3R5cGUuY2xvc2U9ZnVuY3Rpb24oYil7ZnVuY3Rpb24gYygpe2cuZGV0YWNoKCkudHJpZ2dlcigiY2xvc2VkLmJzLmFsZXJ0IikucmVtb3ZlKCl9dmFyIGU9YSh0aGlzKSxmPWUuYXR0cigiZGF0YS10YXJnZXQiKTtmfHwoZj1lLmF0dHIoImhyZWYiKSxmPWYmJmYucmVwbGFjZSgvLiooPz0jW15cc10qJCkvLCIiKSk7dmFyIGc9YShmKTtiJiZiLnByZXZlbnREZWZhdWx0KCksZy5sZW5ndGh8fChnPWUuY2xvc2VzdCgiLmFsZXJ0IikpLGcudHJpZ2dlcihiPWEuRXZlbnQoImNsb3NlLmJzLmFsZXJ0IikpLGIuaXNEZWZhdWx0UHJldmVudGVkKCl8fChnLnJlbW92ZUNsYXNzKCJpbiIpLGEuc3VwcG9ydC50cmFuc2l0aW9uJiZnLmhhc0NsYXNzKCJmYWRlIik/Zy5vbmUoImJzVHJhbnNpdGlvbkVuZCIsYykuZW11bGF0ZVRyYW5zaXRpb25FbmQoZC5UUkFOU0lUSU9OX0RVUkFUSU9OKTpjKCkpfTt2YXIgZT1hLmZuLmFsZXJ0O2EuZm4uYWxlcnQ9YixhLmZuLmFsZXJ0LkNvbnN0cnVjdG9yPWQsYS5mbi5hbGVydC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYWxlcnQ9ZSx0aGlzfSxhKGRvY3VtZW50KS5vbigiY2xpY2suYnMuYWxlcnQuZGF0YS1hcGkiLGMsZC5wcm90b3R5cGUuY2xvc2UpfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMuYnV0dG9uIiksZj0ib2JqZWN0Ij09dHlwZW9mIGImJmI7ZXx8ZC5kYXRhKCJicy5idXR0b24iLGU9bmV3IGModGhpcyxmKSksInRvZ2dsZSI9PWI/ZS50b2dnbGUoKTpiJiZlLnNldFN0YXRlKGIpfSl9dmFyIGM9ZnVuY3Rpb24oYixkKXt0aGlzLiRlbGVtZW50PWEoYiksdGhpcy5vcHRpb25zPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZCksdGhpcy5pc0xvYWRpbmc9ITF9O2MuVkVSU0lPTj0iMy4zLjUiLGMuREVGQVVMVFM9e2xvYWRpbmdUZXh0OiJsb2FkaW5nLi4uIn0sYy5wcm90b3R5cGUuc2V0U3RhdGU9ZnVuY3Rpb24oYil7dmFyIGM9ImRpc2FibGVkIixkPXRoaXMuJGVsZW1lbnQsZT1kLmlzKCJpbnB1dCIpPyJ2YWwiOiJodG1sIixmPWQuZGF0YSgpO2IrPSJUZXh0IixudWxsPT1mLnJlc2V0VGV4dCYmZC5kYXRhKCJyZXNldFRleHQiLGRbZV0oKSksc2V0VGltZW91dChhLnByb3h5KGZ1bmN0aW9uKCl7ZFtlXShudWxsPT1mW2JdP3RoaXMub3B0aW9uc1tiXTpmW2JdKSwibG9hZGluZ1RleHQiPT1iPyh0aGlzLmlzTG9hZGluZz0hMCxkLmFkZENsYXNzKGMpLmF0dHIoYyxjKSk6dGhpcy5pc0xvYWRpbmcmJih0aGlzLmlzTG9hZGluZz0hMSxkLnJlbW92ZUNsYXNzKGMpLnJlbW92ZUF0dHIoYykpfSx0aGlzKSwwKX0sYy5wcm90b3R5cGUudG9nZ2xlPWZ1bmN0aW9uKCl7dmFyIGE9ITAsYj10aGlzLiRlbGVtZW50LmNsb3Nlc3QoJ1tkYXRhLXRvZ2dsZT0iYnV0dG9ucyJdJyk7aWYoYi5sZW5ndGgpe3ZhciBjPXRoaXMuJGVsZW1lbnQuZmluZCgiaW5wdXQiKTsicmFkaW8iPT1jLnByb3AoInR5cGUiKT8oYy5wcm9wKCJjaGVja2VkIikmJihhPSExKSxiLmZpbmQoI
<script src="data:application/x-javascript;base64,LyoqCiogQHByZXNlcnZlIEhUTUw1IFNoaXYgMy43LjIgfCBAYWZhcmthcyBAamRhbHRvbiBAam9uX25lYWwgQHJlbSB8IE1JVC9HUEwyIExpY2Vuc2VkCiovCi8vIE9ubHkgcnVuIHRoaXMgY29kZSBpbiBJRSA4CmlmICghIXdpbmRvdy5uYXZpZ2F0b3IudXNlckFnZW50Lm1hdGNoKCJNU0lFIDgiKSkgewohZnVuY3Rpb24oYSxiKXtmdW5jdGlvbiBjKGEsYil7dmFyIGM9YS5jcmVhdGVFbGVtZW50KCJwIiksZD1hLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGEuZG9jdW1lbnRFbGVtZW50O3JldHVybiBjLmlubmVySFRNTD0ieDxzdHlsZT4iK2IrIjwvc3R5bGU+IixkLmluc2VydEJlZm9yZShjLmxhc3RDaGlsZCxkLmZpcnN0Q2hpbGQpfWZ1bmN0aW9uIGQoKXt2YXIgYT10LmVsZW1lbnRzO3JldHVybiJzdHJpbmciPT10eXBlb2YgYT9hLnNwbGl0KCIgIik6YX1mdW5jdGlvbiBlKGEsYil7dmFyIGM9dC5lbGVtZW50czsic3RyaW5nIiE9dHlwZW9mIGMmJihjPWMuam9pbigiICIpKSwic3RyaW5nIiE9dHlwZW9mIGEmJihhPWEuam9pbigiICIpKSx0LmVsZW1lbnRzPWMrIiAiK2EsaihiKX1mdW5jdGlvbiBmKGEpe3ZhciBiPXNbYVtxXV07cmV0dXJuIGJ8fChiPXt9LHIrKyxhW3FdPXIsc1tyXT1iKSxifWZ1bmN0aW9uIGcoYSxjLGQpe2lmKGN8fChjPWIpLGwpcmV0dXJuIGMuY3JlYXRlRWxlbWVudChhKTtkfHwoZD1mKGMpKTt2YXIgZTtyZXR1cm4gZT1kLmNhY2hlW2FdP2QuY2FjaGVbYV0uY2xvbmVOb2RlKCk6cC50ZXN0KGEpPyhkLmNhY2hlW2FdPWQuY3JlYXRlRWxlbShhKSkuY2xvbmVOb2RlKCk6ZC5jcmVhdGVFbGVtKGEpLCFlLmNhbkhhdmVDaGlsZHJlbnx8by50ZXN0KGEpfHxlLnRhZ1Vybj9lOmQuZnJhZy5hcHBlbmRDaGlsZChlKX1mdW5jdGlvbiBoKGEsYyl7aWYoYXx8KGE9YiksbClyZXR1cm4gYS5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCk7Yz1jfHxmKGEpO2Zvcih2YXIgZT1jLmZyYWcuY2xvbmVOb2RlKCksZz0wLGg9ZCgpLGk9aC5sZW5ndGg7aT5nO2crKyllLmNyZWF0ZUVsZW1lbnQoaFtnXSk7cmV0dXJuIGV9ZnVuY3Rpb24gaShhLGIpe2IuY2FjaGV8fChiLmNhY2hlPXt9LGIuY3JlYXRlRWxlbT1hLmNyZWF0ZUVsZW1lbnQsYi5jcmVhdGVGcmFnPWEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudCxiLmZyYWc9Yi5jcmVhdGVGcmFnKCkpLGEuY3JlYXRlRWxlbWVudD1mdW5jdGlvbihjKXtyZXR1cm4gdC5zaGl2TWV0aG9kcz9nKGMsYSxiKTpiLmNyZWF0ZUVsZW0oYyl9LGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudD1GdW5jdGlvbigiaCxmIiwicmV0dXJuIGZ1bmN0aW9uKCl7dmFyIG49Zi5jbG9uZU5vZGUoKSxjPW4uY3JlYXRlRWxlbWVudDtoLnNoaXZNZXRob2RzJiYoIitkKCkuam9pbigpLnJlcGxhY2UoL1tcd1wtOl0rL2csZnVuY3Rpb24oYSl7cmV0dXJuIGIuY3JlYXRlRWxlbShhKSxiLmZyYWcuY3JlYXRlRWxlbWVudChhKSwnYygiJythKyciKSd9KSsiKTtyZXR1cm4gbn0iKSh0LGIuZnJhZyl9ZnVuY3Rpb24gaihhKXthfHwoYT1iKTt2YXIgZD1mKGEpO3JldHVybiF0LnNoaXZDU1N8fGt8fGQuaGFzQ1NTfHwoZC5oYXNDU1M9ISFjKGEsImFydGljbGUsYXNpZGUsZGlhbG9nLGZpZ2NhcHRpb24sZmlndXJlLGZvb3RlcixoZWFkZXIsaGdyb3VwLG1haW4sbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31tYXJre2JhY2tncm91bmQ6I0ZGMDtjb2xvcjojMDAwfXRlbXBsYXRle2Rpc3BsYXk6bm9uZX0iKSksbHx8aShhLGQpLGF9dmFyIGssbCxtPSIzLjcuMiIsbj1hLmh0bWw1fHx7fSxvPS9ePHxeKD86YnV0dG9ufG1hcHxzZWxlY3R8dGV4dGFyZWF8b2JqZWN0fGlmcmFtZXxvcHRpb258b3B0Z3JvdXApJC9pLHA9L14oPzphfGJ8Y29kZXxkaXZ8ZmllbGRzZXR8aDF8aDJ8aDN8aDR8aDV8aDZ8aXxsYWJlbHxsaXxvbHxwfHF8c3BhbnxzdHJvbmd8c3R5bGV8dGFibGV8dGJvZHl8dGR8dGh8dHJ8dWwpJC9pLHE9Il9odG1sNXNoaXYiLHI9MCxzPXt9OyFmdW5jdGlvbigpe3RyeXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImEiKTthLmlubmVySFRNTD0iPHh5ej48L3h5ej4iLGs9ImhpZGRlbiJpbiBhLGw9MT09YS5jaGlsZE5vZGVzLmxlbmd0aHx8ZnVuY3Rpb24oKXtiLmNyZWF0ZUVsZW1lbnQoImEiKTt2YXIgYT1iLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtyZXR1cm4idW5kZWZpbmVkIj09dHlwZW9mIGEuY2xvbmVOb2RlfHwidW5kZWZpbmVkIj09dHlwZW9mIGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudHx8InVuZGVmaW5lZCI9PXR5cGVvZiBhLmNyZWF0ZUVsZW1lbnR9KCl9Y2F0Y2goYyl7az0hMCxsPSEwfX0oKTt2YXIgdD17ZWxlbWVudHM6bi5lbGVtZW50c3x8ImFiYnIgYXJ0aWNsZSBhc2lkZSBhdWRpbyBiZGkgY2FudmFzIGRhdGEgZGF0YWxpc3QgZGV0YWlscyBkaWFsb2cgZmlnY2FwdGlvbiBmaWd1cmUgZm9vdGVyIGhlYWRlciBoZ3JvdXAgbWFpbiBtYXJrIG1ldGVyIG5hdiBvdXRwdXQgcGljdHVyZSBwcm9ncmVzcyBzZWN0aW9uIHN1bW1hcnkgdGVtcGxhdGUgdGltZSB2aWRlbyIsdmVyc2lvbjptLHNoaXZDU1M6bi5zaGl2Q1NTIT09ITEsc3VwcG9ydHNVbmtub3duRWxlbWVudHM6bCxzaGl2TWV0aG9kczpuLnNoaXZNZXRob2RzIT09ITEsdHlwZToiZGVmYXVsdCIsc2hpdkRvY3VtZW50OmosY3JlYXRlRWxlbWVudDpnLGNyZWF0ZURvY3VtZW50RnJhZ21lbnQ6aCxhZGRFbGVtZW50czplfTthLmh0bWw1PXQsaihiKX0odGhpcyxkb2N1bWVudCk7Cn07Cg=="></script>
<script src="data:application/x-javascript;base64,LyohIFJlc3BvbmQuanMgdjEuNC4yOiBtaW4vbWF4LXdpZHRoIG1lZGlhIHF1ZXJ5IHBvbHlmaWxsICogQ29weXJpZ2h0IDIwMTMgU2NvdHQgSmVobAogKiBMaWNlbnNlZCB1bmRlciBodHRwczovL2dpdGh1Yi5jb20vc2NvdHRqZWhsL1Jlc3BvbmQvYmxvYi9tYXN0ZXIvTElDRU5TRS1NSVQKICogICovCgovLyBPbmx5IHJ1biB0aGlzIGNvZGUgaW4gSUUgOAppZiAoISF3aW5kb3cubmF2aWdhdG9yLnVzZXJBZ2VudC5tYXRjaCgiTVNJRSA4IikpIHsKIWZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjthLm1hdGNoTWVkaWE9YS5tYXRjaE1lZGlhfHxmdW5jdGlvbihhKXt2YXIgYixjPWEuZG9jdW1lbnRFbGVtZW50LGQ9Yy5maXJzdEVsZW1lbnRDaGlsZHx8Yy5maXJzdENoaWxkLGU9YS5jcmVhdGVFbGVtZW50KCJib2R5IiksZj1hLmNyZWF0ZUVsZW1lbnQoImRpdiIpO3JldHVybiBmLmlkPSJtcS10ZXN0LTEiLGYuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7dG9wOi0xMDBlbSIsZS5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIixlLmFwcGVuZENoaWxkKGYpLGZ1bmN0aW9uKGEpe3JldHVybiBmLmlubmVySFRNTD0nJnNoeTs8c3R5bGUgbWVkaWE9IicrYSsnIj4gI21xLXRlc3QtMSB7IHdpZHRoOiA0MnB4OyB9PC9zdHlsZT4nLGMuaW5zZXJ0QmVmb3JlKGUsZCksYj00Mj09PWYub2Zmc2V0V2lkdGgsYy5yZW1vdmVDaGlsZChlKSx7bWF0Y2hlczpiLG1lZGlhOmF9fX0oYS5kb2N1bWVudCl9KHRoaXMpLGZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dSghMCl9dmFyIGM9e307YS5yZXNwb25kPWMsYy51cGRhdGU9ZnVuY3Rpb24oKXt9O3ZhciBkPVtdLGU9ZnVuY3Rpb24oKXt2YXIgYj0hMTt0cnl7Yj1uZXcgYS5YTUxIdHRwUmVxdWVzdH1jYXRjaChjKXtiPW5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9cmV0dXJuIGZ1bmN0aW9uKCl7cmV0dXJuIGJ9fSgpLGY9ZnVuY3Rpb24oYSxiKXt2YXIgYz1lKCk7YyYmKGMub3BlbigiR0VUIixhLCEwKSxjLm9ucmVhZHlzdGF0ZWNoYW5nZT1mdW5jdGlvbigpezQhPT1jLnJlYWR5U3RhdGV8fDIwMCE9PWMuc3RhdHVzJiYzMDQhPT1jLnN0YXR1c3x8YihjLnJlc3BvbnNlVGV4dCl9LDQhPT1jLnJlYWR5U3RhdGUmJmMuc2VuZChudWxsKSl9O2lmKGMuYWpheD1mLGMucXVldWU9ZCxjLnJlZ2V4PXttZWRpYTovQG1lZGlhW15ce10rXHsoW15ce1x9XSpce1teXH1ce10qXH0pKy9naSxrZXlmcmFtZXM6L0AoPzpcLSg/Om98bW96fHdlYmtpdClcLSk/a2V5ZnJhbWVzW15ce10rXHsoPzpbXlx7XH1dKlx7W15cfVx7XSpcfSkrW15cfV0qXH0vZ2ksdXJsczovKHVybFwoKVsnIl0/KFteXC9cKSciXVteOlwpJyJdKylbJyJdPyhcKSkvZyxmaW5kU3R5bGVzOi9AbWVkaWEgKihbXlx7XSspXHsoW1xTXHNdKz8pJC8sb25seTovKG9ubHlccyspPyhbYS16QS1aXSspXHM/LyxtaW53Oi9cKFtcc10qbWluXC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpLyxtYXh3Oi9cKFtcc10qbWF4XC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpL30sYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQ9YS5tYXRjaE1lZGlhJiZudWxsIT09YS5tYXRjaE1lZGlhKCJvbmx5IGFsbCIpJiZhLm1hdGNoTWVkaWEoIm9ubHkgYWxsIikubWF0Y2hlcywhYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQpe3ZhciBnLGgsaSxqPWEuZG9jdW1lbnQsaz1qLmRvY3VtZW50RWxlbWVudCxsPVtdLG09W10sbj1bXSxvPXt9LHA9MzAscT1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGsscj1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJiYXNlIilbMF0scz1xLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJsaW5rIiksdD1mdW5jdGlvbigpe3ZhciBhLGI9ai5jcmVhdGVFbGVtZW50KCJkaXYiKSxjPWouYm9keSxkPWsuc3R5bGUuZm9udFNpemUsZT1jJiZjLnN0eWxlLmZvbnRTaXplLGY9ITE7cmV0dXJuIGIuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOjFlbTt3aWR0aDoxZW0iLGN8fChjPWY9ai5jcmVhdGVFbGVtZW50KCJib2R5IiksYy5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIiksay5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5hcHBlbmRDaGlsZChiKSxmJiZrLmluc2VydEJlZm9yZShjLGsuZmlyc3RDaGlsZCksYT1iLm9mZnNldFdpZHRoLGY/ay5yZW1vdmVDaGlsZChjKTpjLnJlbW92ZUNoaWxkKGIpLGsuc3R5bGUuZm9udFNpemU9ZCxlJiYoYy5zdHlsZS5mb250U2l6ZT1lKSxhPWk9cGFyc2VGbG9hdChhKX0sdT1mdW5jdGlvbihiKXt2YXIgYz0iY2xpZW50V2lkdGgiLGQ9a1tjXSxlPSJDU1MxQ29tcGF0Ij09PWouY29tcGF0TW9kZSYmZHx8ai5ib2R5W2NdfHxkLGY9e30sbz1zW3MubGVuZ3RoLTFdLHI9KG5ldyBEYXRlKS5nZXRUaW1lKCk7aWYoYiYmZyYmcD5yLWcpcmV0dXJuIGEuY2xlYXJUaW1lb3V0KGgpLGg9YS5zZXRUaW1lb3V0KHUscCksdm9pZCAwO2c9cjtmb3IodmFyIHYgaW4gbClpZihsLmhhc093blByb3BlcnR5KHYpKXt2YXIgdz1sW3ZdLHg9dy5taW53LHk9dy5tYXh3LHo9bnVsbD09PXgsQT1udWxsPT09eSxCPSJlbSI7eCYmKHg9cGFyc2VGbG9hdCh4KSooeC5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSkseSYmKHk9cGFyc2VGbG9hdCh5KSooeS5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSksdy5oYXNxdWVyeSYmKHomJkF8fCEoenx8ZT49eCl8fCEoQXx8eT49ZSkpfHwoZlt3Lm1lZGlhXXx8KGZbdy5tZWRpYV09W10pLGZbdy5tZWRpYV0ucHVzaChtW3cucnVsZXNdKSl9Zm9yKHZhciBDIGluIG4pbi5oYXNPd25Qcm9wZXJ0eShDKSYmbltDXSYmbltDXS5wYXJlbnROb2RlPT09cSYmcS5yZW1vdmVDaGlsZChuW0NdKTtuLmxlbmd0aD0wO2Zvcih2YXIgRCBpbiBmKWlmKGYuaGFzT3duUHJvcGVydHkoRCkpe3ZhciBFPWouY3JlYXRlRWxlbWVudCgic3R5bGUiKSxGPWZbRF0uam9pbigiXG4iKTtFLnR5cGU9InRleHQvY3NzIixFLm1lZGlhPUQscS5pbnNlc
<script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ
<link href="data:text/css;charset=utf-8,%2Ehljs%2Dliteral%20%7B%0Acolor%3A%20%23990073%3B%0A%7D%0A%2Ehljs%2Dnumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0A%2Ehljs%2Dcomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Ehljs%2Dkeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Ehljs%2Dstring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" />
<script src="data:application/x-javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0K
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
</head>
<body>
<style type="text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<div class="container-fluid main-container">
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Case Study Sleep</h1>
<h4 class="author"><em>Jonathan Herrewijnen</em></h4>
<h4 class="date"><em>September 17, 2018</em></h4>
</div>
<div id="r-markdown" class="section level2">
<h2>R Markdown</h2>
<p>This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <a href="http://rmarkdown.rstudio.com" class="uri">http://rmarkdown.rstudio.com</a>.</p>
<p>When you click the <strong>Knit</strong> button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:</p>
<pre class="r"><code>summary(cars)</code></pre>
<pre><code>## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00</code></pre>
</div>
<div id="including-plots" class="section level2">
<h2>Including Plots</h2>
<p>You can also embed plots, for example:</p>
<p><img src="
<pre><code>## extra group ID
## 1 0.7 1 1
## 2 -1.6 1 2
## 3 -0.2 1 3
## 4 -1.2 1 4
## 5 -0.1 1 5
## 6 3.4 1 6</code></pre>
<pre><code>## extra group ID
## 1 0.7 1 1
## 2 -1.6 1 2
## 3 -0.2 1 3
## 4 -1.2 1 4
## 5 -0.1 1 5
## 6 3.4 1 6
## 7 3.7 1 7
## 8 0.8 1 8
## 9 0.0 1 9
## 10 2.0 1 10
## 11 1.9 2 1
## 12 0.8 2 2
## 13 1.1 2 3
## 14 0.1 2 4
## 15 -0.1 2 5
## 16 4.4 2 6
## 17 5.5 2 7
## 18 1.6 2 8
## 19 4.6 2 9
## 20 3.4 2 10</code></pre>
<p>Note that the <code>echo = FALSE</code> parameter was added to the code chunk to prevent printing of the R code that generated the plot.</p>
<p>We found two groups in our data, but we are not sure whether the second group is our control group or a second medicine. This is not clarified clearly in the data description. So we are assuming that the second group is the control group, but we are not certain.</p>
<p>//OPDRACHTEN - EXERCISES Question 1) Describe the dataset by explaining the variables. If any what are the replicates and/or controls?</p>
<pre class="r"><code>summary(sleep)</code></pre>
<pre><code>## extra group ID
## Min. :-1.600 1:10 1 :2
## 1st Qu.:-0.025 2:10 2 :2
## Median : 0.950 3 :2
## Mean : 1.540 4 :2
## 3rd Qu.: 3.400 5 :2
## Max. : 5.500 6 :2
## (Other):8</code></pre>
<pre class="r"><code>sleep</code></pre>
<pre><code>## extra group ID
## 1 0.7 1 1
## 2 -1.6 1 2
## 3 -0.2 1 3
## 4 -1.2 1 4
## 5 -0.1 1 5
## 6 3.4 1 6
## 7 3.7 1 7
## 8 0.8 1 8
## 9 0.0 1 9
## 10 2.0 1 10
## 11 1.9 2 1
## 12 0.8 2 2
## 13 1.1 2 3
## 14 0.1 2 4
## 15 -0.1 2 5
## 16 4.4 2 6
## 17 5.5 2 7
## 18 1.6 2 8
## 19 4.6 2 9
## 20 3.4 2 10</code></pre>
<pre class="r"><code>?sleep</code></pre>
<pre><code>## starting httpd help server ... done</code></pre>
<p>See the code above, the table “sleep” contains 3 variables, namely: extra, group, ID. -“extra” stands for the extra hours of sleep a student who took a certain drug -“group” stands for the drug a student was given, with 2 different types of drugs -“ID” stands for the patient, one ID per patient/student</p>
<p>20 observations and 3 variables are contained within the table. Second group is the control group.</p>
<p>Question 2) Describe the performed experiment/ analysis. What was of interest/ what was the research question?</p>
<p>Students were given a drug, two seperate groups were created, in which the first group got a sleep prolongation drug, and second group was used as control group. The researchers were interested in the amount of prolonged sleep in hours.</p>
<p>Using ?sleep.</p>
<p>Question 3) Summarize the data statistically.</p>
<p>See the summary and t.test below in the next code snippet box</p>
<p>Question 4) Are there any clear outliers or missing values? If so, which ones?</p>
<p>The boxplot is not showing any outliers, so no outliers are visible.</p>
<pre class="r"><code>require(stats)
#QUESTION THREE
summary(sleep)</code></pre>
<pre><code>## extra group ID
## Min. :-1.600 1:10 1 :2
## 1st Qu.:-0.025 2:10 2 :2
## Median : 0.950 3 :2
## Mean : 1.540 4 :2
## 3rd Qu.: 3.400 5 :2
## Max. : 5.500 6 :2
## (Other):8</code></pre>
<pre class="r"><code>#Simple t.test
with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))</code></pre>
<pre><code>##
## Paired t-test
##
## data: extra[group == 1] and extra[group == 2]
## t = -4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.4598858 -0.7001142
## sample estimates:
## mean of the differences
## -1.58</code></pre>
<pre class="r"><code>?sleep
?boxplot
#QUESTION FOUR
#Individual plots
boxplot(with(sleep, extra[group==1]))
boxplot(with(sleep, extra[group==2]), add=TRUE)</code></pre>
<p><img src="
<pre class="r"><code>boxplot(with(sleep, extra[group==1], extra[group==2]), paired=TRUE)</code></pre>
<p><img src="
<pre class="r"><code>#plot(with(sleep, extra[group==2]), add = TRUE)
boxplot(sleep$extra ~ sleep$group, xlab=&quot;Groups&quot;, ylab=&quot;Sleep prolongation (h)&quot;)
points(sleep$extra ~ sleep$group, pch = 1)</code></pre>
<p><img src="
<p>Question 5) Summarize the data graphically using only 1 figure. Choose a figure that summarizes the data adequately. Use the graphical package ggplot2. Explain your choice.</p>
<p>We have two groups and only one variable. So a boxplot is a logical choice for comparing both datasets.</p>
<pre class="r"><code>library(ggplot2)
ggplot(sleep, aes(x=group, y=extra)) + geom_boxplot()</code></pre>
<p><img src="
<p>Question 6) Explore the data, include check for distribution/ normality range of variables mention number and type of variables and observations</p>
<pre class="r"><code>#Checking for distribution using a QQplot
par(mfrow=c(2, 1)) #plots 2 graphs
with(sleep, hist(extra[group==1]))
with(sleep, hist(extra[group==2]))</code></pre>
<p><img src="
<p>No distribution seems to be visible (if so, then a bell curve would be expected)</p>
<p>Question 7) Calculate the mean sleep prolongation of the two drugs using the aggregate function on the sleep data frame.</p>
<pre class="r"><code>#Calculate mean sleep
aggregate(formula = extra~group, data = sleep, FUN = mean)</code></pre>
<pre><code>## group extra
## 1 1 0.75
## 2 2 2.33</code></pre>
<p>See function above, results are 0.75 hours and 2.33 hours extra sleep for drug one and two respectively</p>
<p>Question 8) Calculate the difference in sleep prolongation based on drug type for each patient. Store this new dataset in a new data frame including patient number. Do this by writing a function with as input argument the sleep data frame and as output the new data frame.</p>
<pre class="r"><code>my_dataframe &lt;- data.frame(with(sleep, extra[group==1]-extra[group==2]))
my_dataframe</code></pre>
<pre><code>## with.sleep..extra.group....1....extra.group....2..
## 1 -1.2
## 2 -2.4
## 3 -1.3
## 4 -1.3
## 5 0.0
## 6 -1.0
## 7 -1.8
## 8 -0.8
## 9 -4.6
## 10 -1.4</code></pre>
<p>See above.</p>
<p>Question 9) Is the sleep prolongation difference between the drugs (more) normaly distributed?</p>
<pre class="r"><code>shapiro.test(sleep$extra)</code></pre>
<pre><code>##
## Shapiro-Wilk normality test
##
## data: sleep$extra
## W = 0.94607, p-value = 0.3114</code></pre>
<pre class="r"><code>hist(sleep$extra)</code></pre>
<p><img src="
<p>So the p-value here is 0.3114, meaning that it differs signifcantly from a normal distribution. We can not assume that the data is normaly distributed.</p>
<p>Question 10) Was there a significant difference in sleep prolongation between the drugs? Mention the effect size, is this of a relevant magnitude? Explain why.</p>
<p>Also explain why you chose this specific test.</p>
<pre class="r"><code>ThisData &lt;- data.frame(with(sleep, mean(extra[group==1])), with(sleep, mean(extra[group==2])))
ThisData</code></pre>
<pre><code>## with.sleep..mean.extra.group....1...
## 1 0.75
## with.sleep..mean.extra.group....2...
## 1 2.33</code></pre>
<pre class="r"><code>with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))</code></pre>
<pre><code>##
## Paired t-test
##
## data: extra[group == 1] and extra[group == 2]
## t = -4.0621, df = 9, p-value = 0.002833
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.4598858 -0.7001142
## sample estimates:
## mean of the differences
## -1.58</code></pre>
<p>The mean between both drugs is very different, 0.75 to 2.33, implying a difference.</p>
<p>The t.test shows a difference of -1.58 between the test with a reliability of 0.002833.</p>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>