Eljakim Herrewijnen 50b5fc1824 Initial commit
2021-09-27 21:52:27 +02:00

1007 lines
43 KiB
Python
Executable File

from . import model
from .commontypes import COMMON_TYPES, resolve_common_type
from .error import FFIError, CDefError
try:
from . import _pycparser as pycparser
except ImportError:
import pycparser
import weakref, re, sys
try:
if sys.version_info < (3,):
import thread as _thread
else:
import _thread
lock = _thread.allocate_lock()
except ImportError:
lock = None
def _workaround_for_static_import_finders():
# Issue #392: packaging tools like cx_Freeze can not find these
# because pycparser uses exec dynamic import. This is an obscure
# workaround. This function is never called.
import pycparser.yacctab
import pycparser.lextab
CDEF_SOURCE_STRING = "<cdef source string>"
_r_comment = re.compile(r"/\*.*?\*/|//([^\n\\]|\\.)*?$",
re.DOTALL | re.MULTILINE)
_r_define = re.compile(r"^\s*#\s*define\s+([A-Za-z_][A-Za-z_0-9]*)"
r"\b((?:[^\n\\]|\\.)*?)$",
re.DOTALL | re.MULTILINE)
_r_line_directive = re.compile(r"^[ \t]*#[ \t]*(?:line|\d+)\b.*$", re.MULTILINE)
_r_partial_enum = re.compile(r"=\s*\.\.\.\s*[,}]|\.\.\.\s*\}")
_r_enum_dotdotdot = re.compile(r"__dotdotdot\d+__$")
_r_partial_array = re.compile(r"\[\s*\.\.\.\s*\]")
_r_words = re.compile(r"\w+|\S")
_parser_cache = None
_r_int_literal = re.compile(r"-?0?x?[0-9a-f]+[lu]*$", re.IGNORECASE)
_r_stdcall1 = re.compile(r"\b(__stdcall|WINAPI)\b")
_r_stdcall2 = re.compile(r"[(]\s*(__stdcall|WINAPI)\b")
_r_cdecl = re.compile(r"\b__cdecl\b")
_r_extern_python = re.compile(r'\bextern\s*"'
r'(Python|Python\s*\+\s*C|C\s*\+\s*Python)"\s*.')
_r_star_const_space = re.compile( # matches "* const "
r"[*]\s*((const|volatile|restrict)\b\s*)+")
_r_int_dotdotdot = re.compile(r"(\b(int|long|short|signed|unsigned|char)\s*)+"
r"\.\.\.")
_r_float_dotdotdot = re.compile(r"\b(double|float)\s*\.\.\.")
def _get_parser():
global _parser_cache
if _parser_cache is None:
_parser_cache = pycparser.CParser()
return _parser_cache
def _workaround_for_old_pycparser(csource):
# Workaround for a pycparser issue (fixed between pycparser 2.10 and
# 2.14): "char*const***" gives us a wrong syntax tree, the same as
# for "char***(*const)". This means we can't tell the difference
# afterwards. But "char(*const(***))" gives us the right syntax
# tree. The issue only occurs if there are several stars in
# sequence with no parenthesis inbetween, just possibly qualifiers.
# Attempt to fix it by adding some parentheses in the source: each
# time we see "* const" or "* const *", we add an opening
# parenthesis before each star---the hard part is figuring out where
# to close them.
parts = []
while True:
match = _r_star_const_space.search(csource)
if not match:
break
#print repr(''.join(parts)+csource), '=>',
parts.append(csource[:match.start()])
parts.append('('); closing = ')'
parts.append(match.group()) # e.g. "* const "
endpos = match.end()
if csource.startswith('*', endpos):
parts.append('('); closing += ')'
level = 0
i = endpos
while i < len(csource):
c = csource[i]
if c == '(':
level += 1
elif c == ')':
if level == 0:
break
level -= 1
elif c in ',;=':
if level == 0:
break
i += 1
csource = csource[endpos:i] + closing + csource[i:]
#print repr(''.join(parts)+csource)
parts.append(csource)
return ''.join(parts)
def _preprocess_extern_python(csource):
# input: `extern "Python" int foo(int);` or
# `extern "Python" { int foo(int); }`
# output:
# void __cffi_extern_python_start;
# int foo(int);
# void __cffi_extern_python_stop;
#
# input: `extern "Python+C" int foo(int);`
# output:
# void __cffi_extern_python_plus_c_start;
# int foo(int);
# void __cffi_extern_python_stop;
parts = []
while True:
match = _r_extern_python.search(csource)
if not match:
break
endpos = match.end() - 1
#print
#print ''.join(parts)+csource
#print '=>'
parts.append(csource[:match.start()])
if 'C' in match.group(1):
parts.append('void __cffi_extern_python_plus_c_start; ')
else:
parts.append('void __cffi_extern_python_start; ')
if csource[endpos] == '{':
# grouping variant
closing = csource.find('}', endpos)
if closing < 0:
raise CDefError("'extern \"Python\" {': no '}' found")
if csource.find('{', endpos + 1, closing) >= 0:
raise NotImplementedError("cannot use { } inside a block "
"'extern \"Python\" { ... }'")
parts.append(csource[endpos+1:closing])
csource = csource[closing+1:]
else:
# non-grouping variant
semicolon = csource.find(';', endpos)
if semicolon < 0:
raise CDefError("'extern \"Python\": no ';' found")
parts.append(csource[endpos:semicolon+1])
csource = csource[semicolon+1:]
parts.append(' void __cffi_extern_python_stop;')
#print ''.join(parts)+csource
#print
parts.append(csource)
return ''.join(parts)
def _warn_for_string_literal(csource):
if '"' not in csource:
return
for line in csource.splitlines():
if '"' in line and not line.lstrip().startswith('#'):
import warnings
warnings.warn("String literal found in cdef() or type source. "
"String literals are ignored here, but you should "
"remove them anyway because some character sequences "
"confuse pre-parsing.")
break
def _warn_for_non_extern_non_static_global_variable(decl):
if not decl.storage:
import warnings
warnings.warn("Global variable '%s' in cdef(): for consistency "
"with C it should have a storage class specifier "
"(usually 'extern')" % (decl.name,))
def _remove_line_directives(csource):
# _r_line_directive matches whole lines, without the final \n, if they
# start with '#line' with some spacing allowed, or '#NUMBER'. This
# function stores them away and replaces them with exactly the string
# '#line@N', where N is the index in the list 'line_directives'.
line_directives = []
def replace(m):
i = len(line_directives)
line_directives.append(m.group())
return '#line@%d' % i
csource = _r_line_directive.sub(replace, csource)
return csource, line_directives
def _put_back_line_directives(csource, line_directives):
def replace(m):
s = m.group()
if not s.startswith('#line@'):
raise AssertionError("unexpected #line directive "
"(should have been processed and removed")
return line_directives[int(s[6:])]
return _r_line_directive.sub(replace, csource)
def _preprocess(csource):
# First, remove the lines of the form '#line N "filename"' because
# the "filename" part could confuse the rest
csource, line_directives = _remove_line_directives(csource)
# Remove comments. NOTE: this only work because the cdef() section
# should not contain any string literals (except in line directives)!
def replace_keeping_newlines(m):
return ' ' + m.group().count('\n') * '\n'
csource = _r_comment.sub(replace_keeping_newlines, csource)
# Remove the "#define FOO x" lines
macros = {}
for match in _r_define.finditer(csource):
macroname, macrovalue = match.groups()
macrovalue = macrovalue.replace('\\\n', '').strip()
macros[macroname] = macrovalue
csource = _r_define.sub('', csource)
#
if pycparser.__version__ < '2.14':
csource = _workaround_for_old_pycparser(csource)
#
# BIG HACK: replace WINAPI or __stdcall with "volatile const".
# It doesn't make sense for the return type of a function to be
# "volatile volatile const", so we abuse it to detect __stdcall...
# Hack number 2 is that "int(volatile *fptr)();" is not valid C
# syntax, so we place the "volatile" before the opening parenthesis.
csource = _r_stdcall2.sub(' volatile volatile const(', csource)
csource = _r_stdcall1.sub(' volatile volatile const ', csource)
csource = _r_cdecl.sub(' ', csource)
#
# Replace `extern "Python"` with start/end markers
csource = _preprocess_extern_python(csource)
#
# Now there should not be any string literal left; warn if we get one
_warn_for_string_literal(csource)
#
# Replace "[...]" with "[__dotdotdotarray__]"
csource = _r_partial_array.sub('[__dotdotdotarray__]', csource)
#
# Replace "...}" with "__dotdotdotNUM__}". This construction should
# occur only at the end of enums; at the end of structs we have "...;}"
# and at the end of vararg functions "...);". Also replace "=...[,}]"
# with ",__dotdotdotNUM__[,}]": this occurs in the enums too, when
# giving an unknown value.
matches = list(_r_partial_enum.finditer(csource))
for number, match in enumerate(reversed(matches)):
p = match.start()
if csource[p] == '=':
p2 = csource.find('...', p, match.end())
assert p2 > p
csource = '%s,__dotdotdot%d__ %s' % (csource[:p], number,
csource[p2+3:])
else:
assert csource[p:p+3] == '...'
csource = '%s __dotdotdot%d__ %s' % (csource[:p], number,
csource[p+3:])
# Replace "int ..." or "unsigned long int..." with "__dotdotdotint__"
csource = _r_int_dotdotdot.sub(' __dotdotdotint__ ', csource)
# Replace "float ..." or "double..." with "__dotdotdotfloat__"
csource = _r_float_dotdotdot.sub(' __dotdotdotfloat__ ', csource)
# Replace all remaining "..." with the same name, "__dotdotdot__",
# which is declared with a typedef for the purpose of C parsing.
csource = csource.replace('...', ' __dotdotdot__ ')
# Finally, put back the line directives
csource = _put_back_line_directives(csource, line_directives)
return csource, macros
def _common_type_names(csource):
# Look in the source for what looks like usages of types from the
# list of common types. A "usage" is approximated here as the
# appearance of the word, minus a "definition" of the type, which
# is the last word in a "typedef" statement. Approximative only
# but should be fine for all the common types.
look_for_words = set(COMMON_TYPES)
look_for_words.add(';')
look_for_words.add(',')
look_for_words.add('(')
look_for_words.add(')')
look_for_words.add('typedef')
words_used = set()
is_typedef = False
paren = 0
previous_word = ''
for word in _r_words.findall(csource):
if word in look_for_words:
if word == ';':
if is_typedef:
words_used.discard(previous_word)
look_for_words.discard(previous_word)
is_typedef = False
elif word == 'typedef':
is_typedef = True
paren = 0
elif word == '(':
paren += 1
elif word == ')':
paren -= 1
elif word == ',':
if is_typedef and paren == 0:
words_used.discard(previous_word)
look_for_words.discard(previous_word)
else: # word in COMMON_TYPES
words_used.add(word)
previous_word = word
return words_used
class Parser(object):
def __init__(self):
self._declarations = {}
self._included_declarations = set()
self._anonymous_counter = 0
self._structnode2type = weakref.WeakKeyDictionary()
self._options = {}
self._int_constants = {}
self._recomplete = []
self._uses_new_feature = None
def _parse(self, csource):
csource, macros = _preprocess(csource)
# XXX: for more efficiency we would need to poke into the
# internals of CParser... the following registers the
# typedefs, because their presence or absence influences the
# parsing itself (but what they are typedef'ed to plays no role)
ctn = _common_type_names(csource)
typenames = []
for name in sorted(self._declarations):
if name.startswith('typedef '):
name = name[8:]
typenames.append(name)
ctn.discard(name)
typenames += sorted(ctn)
#
csourcelines = []
csourcelines.append('# 1 "<cdef automatic initialization code>"')
for typename in typenames:
csourcelines.append('typedef int %s;' % typename)
csourcelines.append('typedef int __dotdotdotint__, __dotdotdotfloat__,'
' __dotdotdot__;')
# this forces pycparser to consider the following in the file
# called <cdef source string> from line 1
csourcelines.append('# 1 "%s"' % (CDEF_SOURCE_STRING,))
csourcelines.append(csource)
fullcsource = '\n'.join(csourcelines)
if lock is not None:
lock.acquire() # pycparser is not thread-safe...
try:
ast = _get_parser().parse(fullcsource)
except pycparser.c_parser.ParseError as e:
self.convert_pycparser_error(e, csource)
finally:
if lock is not None:
lock.release()
# csource will be used to find buggy source text
return ast, macros, csource
def _convert_pycparser_error(self, e, csource):
# xxx look for "<cdef source string>:NUM:" at the start of str(e)
# and interpret that as a line number. This will not work if
# the user gives explicit ``# NUM "FILE"`` directives.
line = None
msg = str(e)
match = re.match(r"%s:(\d+):" % (CDEF_SOURCE_STRING,), msg)
if match:
linenum = int(match.group(1), 10)
csourcelines = csource.splitlines()
if 1 <= linenum <= len(csourcelines):
line = csourcelines[linenum-1]
return line
def convert_pycparser_error(self, e, csource):
line = self._convert_pycparser_error(e, csource)
msg = str(e)
if line:
msg = 'cannot parse "%s"\n%s' % (line.strip(), msg)
else:
msg = 'parse error\n%s' % (msg,)
raise CDefError(msg)
def parse(self, csource, override=False, packed=False, pack=None,
dllexport=False):
if packed:
if packed != True:
raise ValueError("'packed' should be False or True; use "
"'pack' to give another value")
if pack:
raise ValueError("cannot give both 'pack' and 'packed'")
pack = 1
elif pack:
if pack & (pack - 1):
raise ValueError("'pack' must be a power of two, not %r" %
(pack,))
else:
pack = 0
prev_options = self._options
try:
self._options = {'override': override,
'packed': pack,
'dllexport': dllexport}
self._internal_parse(csource)
finally:
self._options = prev_options
def _internal_parse(self, csource):
ast, macros, csource = self._parse(csource)
# add the macros
self._process_macros(macros)
# find the first "__dotdotdot__" and use that as a separator
# between the repeated typedefs and the real csource
iterator = iter(ast.ext)
for decl in iterator:
if decl.name == '__dotdotdot__':
break
else:
assert 0
current_decl = None
#
try:
self._inside_extern_python = '__cffi_extern_python_stop'
for decl in iterator:
current_decl = decl
if isinstance(decl, pycparser.c_ast.Decl):
self._parse_decl(decl)
elif isinstance(decl, pycparser.c_ast.Typedef):
if not decl.name:
raise CDefError("typedef does not declare any name",
decl)
quals = 0
if (isinstance(decl.type.type, pycparser.c_ast.IdentifierType) and
decl.type.type.names[-1].startswith('__dotdotdot')):
realtype = self._get_unknown_type(decl)
elif (isinstance(decl.type, pycparser.c_ast.PtrDecl) and
isinstance(decl.type.type, pycparser.c_ast.TypeDecl) and
isinstance(decl.type.type.type,
pycparser.c_ast.IdentifierType) and
decl.type.type.type.names[-1].startswith('__dotdotdot')):
realtype = self._get_unknown_ptr_type(decl)
else:
realtype, quals = self._get_type_and_quals(
decl.type, name=decl.name, partial_length_ok=True,
typedef_example="*(%s *)0" % (decl.name,))
self._declare('typedef ' + decl.name, realtype, quals=quals)
elif decl.__class__.__name__ == 'Pragma':
pass # skip pragma, only in pycparser 2.15
else:
raise CDefError("unexpected <%s>: this construct is valid "
"C but not valid in cdef()" %
decl.__class__.__name__, decl)
except CDefError as e:
if len(e.args) == 1:
e.args = e.args + (current_decl,)
raise
except FFIError as e:
msg = self._convert_pycparser_error(e, csource)
if msg:
e.args = (e.args[0] + "\n *** Err: %s" % msg,)
raise
def _add_constants(self, key, val):
if key in self._int_constants:
if self._int_constants[key] == val:
return # ignore identical double declarations
raise FFIError(
"multiple declarations of constant: %s" % (key,))
self._int_constants[key] = val
def _add_integer_constant(self, name, int_str):
int_str = int_str.lower().rstrip("ul")
neg = int_str.startswith('-')
if neg:
int_str = int_str[1:]
# "010" is not valid oct in py3
if (int_str.startswith("0") and int_str != '0'
and not int_str.startswith("0x")):
int_str = "0o" + int_str[1:]
pyvalue = int(int_str, 0)
if neg:
pyvalue = -pyvalue
self._add_constants(name, pyvalue)
self._declare('macro ' + name, pyvalue)
def _process_macros(self, macros):
for key, value in macros.items():
value = value.strip()
if _r_int_literal.match(value):
self._add_integer_constant(key, value)
elif value == '...':
self._declare('macro ' + key, value)
else:
raise CDefError(
'only supports one of the following syntax:\n'
' #define %s ... (literally dot-dot-dot)\n'
' #define %s NUMBER (with NUMBER an integer'
' constant, decimal/hex/octal)\n'
'got:\n'
' #define %s %s'
% (key, key, key, value))
def _declare_function(self, tp, quals, decl):
tp = self._get_type_pointer(tp, quals)
if self._options.get('dllexport'):
tag = 'dllexport_python '
elif self._inside_extern_python == '__cffi_extern_python_start':
tag = 'extern_python '
elif self._inside_extern_python == '__cffi_extern_python_plus_c_start':
tag = 'extern_python_plus_c '
else:
tag = 'function '
self._declare(tag + decl.name, tp)
def _parse_decl(self, decl):
node = decl.type
if isinstance(node, pycparser.c_ast.FuncDecl):
tp, quals = self._get_type_and_quals(node, name=decl.name)
assert isinstance(tp, model.RawFunctionType)
self._declare_function(tp, quals, decl)
else:
if isinstance(node, pycparser.c_ast.Struct):
self._get_struct_union_enum_type('struct', node)
elif isinstance(node, pycparser.c_ast.Union):
self._get_struct_union_enum_type('union', node)
elif isinstance(node, pycparser.c_ast.Enum):
self._get_struct_union_enum_type('enum', node)
elif not decl.name:
raise CDefError("construct does not declare any variable",
decl)
#
if decl.name:
tp, quals = self._get_type_and_quals(node,
partial_length_ok=True)
if tp.is_raw_function:
self._declare_function(tp, quals, decl)
elif (tp.is_integer_type() and
hasattr(decl, 'init') and
hasattr(decl.init, 'value') and
_r_int_literal.match(decl.init.value)):
self._add_integer_constant(decl.name, decl.init.value)
elif (tp.is_integer_type() and
isinstance(decl.init, pycparser.c_ast.UnaryOp) and
decl.init.op == '-' and
hasattr(decl.init.expr, 'value') and
_r_int_literal.match(decl.init.expr.value)):
self._add_integer_constant(decl.name,
'-' + decl.init.expr.value)
elif (tp is model.void_type and
decl.name.startswith('__cffi_extern_python_')):
# hack: `extern "Python"` in the C source is replaced
# with "void __cffi_extern_python_start;" and
# "void __cffi_extern_python_stop;"
self._inside_extern_python = decl.name
else:
if self._inside_extern_python !='__cffi_extern_python_stop':
raise CDefError(
"cannot declare constants or "
"variables with 'extern \"Python\"'")
if (quals & model.Q_CONST) and not tp.is_array_type:
self._declare('constant ' + decl.name, tp, quals=quals)
else:
_warn_for_non_extern_non_static_global_variable(decl)
self._declare('variable ' + decl.name, tp, quals=quals)
def parse_type(self, cdecl):
return self.parse_type_and_quals(cdecl)[0]
def parse_type_and_quals(self, cdecl):
ast, macros = self._parse('void __dummy(\n%s\n);' % cdecl)[:2]
assert not macros
exprnode = ast.ext[-1].type.args.params[0]
if isinstance(exprnode, pycparser.c_ast.ID):
raise CDefError("unknown identifier '%s'" % (exprnode.name,))
return self._get_type_and_quals(exprnode.type)
def _declare(self, name, obj, included=False, quals=0):
if name in self._declarations:
prevobj, prevquals = self._declarations[name]
if prevobj is obj and prevquals == quals:
return
if not self._options.get('override'):
raise FFIError(
"multiple declarations of %s (for interactive usage, "
"try cdef(xx, override=True))" % (name,))
assert '__dotdotdot__' not in name.split()
self._declarations[name] = (obj, quals)
if included:
self._included_declarations.add(obj)
def _extract_quals(self, type):
quals = 0
if isinstance(type, (pycparser.c_ast.TypeDecl,
pycparser.c_ast.PtrDecl)):
if 'const' in type.quals:
quals |= model.Q_CONST
if 'volatile' in type.quals:
quals |= model.Q_VOLATILE
if 'restrict' in type.quals:
quals |= model.Q_RESTRICT
return quals
def _get_type_pointer(self, type, quals, declname=None):
if isinstance(type, model.RawFunctionType):
return type.as_function_pointer()
if (isinstance(type, model.StructOrUnionOrEnum) and
type.name.startswith('$') and type.name[1:].isdigit() and
type.forcename is None and declname is not None):
return model.NamedPointerType(type, declname, quals)
return model.PointerType(type, quals)
def _get_type_and_quals(self, typenode, name=None, partial_length_ok=False,
typedef_example=None):
# first, dereference typedefs, if we have it already parsed, we're good
if (isinstance(typenode, pycparser.c_ast.TypeDecl) and
isinstance(typenode.type, pycparser.c_ast.IdentifierType) and
len(typenode.type.names) == 1 and
('typedef ' + typenode.type.names[0]) in self._declarations):
tp, quals = self._declarations['typedef ' + typenode.type.names[0]]
quals |= self._extract_quals(typenode)
return tp, quals
#
if isinstance(typenode, pycparser.c_ast.ArrayDecl):
# array type
if typenode.dim is None:
length = None
else:
length = self._parse_constant(
typenode.dim, partial_length_ok=partial_length_ok)
# a hack: in 'typedef int foo_t[...][...];', don't use '...' as
# the length but use directly the C expression that would be
# generated by recompiler.py. This lets the typedef be used in
# many more places within recompiler.py
if typedef_example is not None:
if length == '...':
length = '_cffi_array_len(%s)' % (typedef_example,)
typedef_example = "*" + typedef_example
#
tp, quals = self._get_type_and_quals(typenode.type,
partial_length_ok=partial_length_ok,
typedef_example=typedef_example)
return model.ArrayType(tp, length), quals
#
if isinstance(typenode, pycparser.c_ast.PtrDecl):
# pointer type
itemtype, itemquals = self._get_type_and_quals(typenode.type)
tp = self._get_type_pointer(itemtype, itemquals, declname=name)
quals = self._extract_quals(typenode)
return tp, quals
#
if isinstance(typenode, pycparser.c_ast.TypeDecl):
quals = self._extract_quals(typenode)
type = typenode.type
if isinstance(type, pycparser.c_ast.IdentifierType):
# assume a primitive type. get it from .names, but reduce
# synonyms to a single chosen combination
names = list(type.names)
if names != ['signed', 'char']: # keep this unmodified
prefixes = {}
while names:
name = names[0]
if name in ('short', 'long', 'signed', 'unsigned'):
prefixes[name] = prefixes.get(name, 0) + 1
del names[0]
else:
break
# ignore the 'signed' prefix below, and reorder the others
newnames = []
for prefix in ('unsigned', 'short', 'long'):
for i in range(prefixes.get(prefix, 0)):
newnames.append(prefix)
if not names:
names = ['int'] # implicitly
if names == ['int']: # but kill it if 'short' or 'long'
if 'short' in prefixes or 'long' in prefixes:
names = []
names = newnames + names
ident = ' '.join(names)
if ident == 'void':
return model.void_type, quals
if ident == '__dotdotdot__':
raise FFIError(':%d: bad usage of "..."' %
typenode.coord.line)
tp0, quals0 = resolve_common_type(self, ident)
return tp0, (quals | quals0)
#
if isinstance(type, pycparser.c_ast.Struct):
# 'struct foobar'
tp = self._get_struct_union_enum_type('struct', type, name)
return tp, quals
#
if isinstance(type, pycparser.c_ast.Union):
# 'union foobar'
tp = self._get_struct_union_enum_type('union', type, name)
return tp, quals
#
if isinstance(type, pycparser.c_ast.Enum):
# 'enum foobar'
tp = self._get_struct_union_enum_type('enum', type, name)
return tp, quals
#
if isinstance(typenode, pycparser.c_ast.FuncDecl):
# a function type
return self._parse_function_type(typenode, name), 0
#
# nested anonymous structs or unions end up here
if isinstance(typenode, pycparser.c_ast.Struct):
return self._get_struct_union_enum_type('struct', typenode, name,
nested=True), 0
if isinstance(typenode, pycparser.c_ast.Union):
return self._get_struct_union_enum_type('union', typenode, name,
nested=True), 0
#
raise FFIError(":%d: bad or unsupported type declaration" %
typenode.coord.line)
def _parse_function_type(self, typenode, funcname=None):
params = list(getattr(typenode.args, 'params', []))
for i, arg in enumerate(params):
if not hasattr(arg, 'type'):
raise CDefError("%s arg %d: unknown type '%s'"
" (if you meant to use the old C syntax of giving"
" untyped arguments, it is not supported)"
% (funcname or 'in expression', i + 1,
getattr(arg, 'name', '?')))
ellipsis = (
len(params) > 0 and
isinstance(params[-1].type, pycparser.c_ast.TypeDecl) and
isinstance(params[-1].type.type,
pycparser.c_ast.IdentifierType) and
params[-1].type.type.names == ['__dotdotdot__'])
if ellipsis:
params.pop()
if not params:
raise CDefError(
"%s: a function with only '(...)' as argument"
" is not correct C" % (funcname or 'in expression'))
args = [self._as_func_arg(*self._get_type_and_quals(argdeclnode.type))
for argdeclnode in params]
if not ellipsis and args == [model.void_type]:
args = []
result, quals = self._get_type_and_quals(typenode.type)
# the 'quals' on the result type are ignored. HACK: we absure them
# to detect __stdcall functions: we textually replace "__stdcall"
# with "volatile volatile const" above.
abi = None
if hasattr(typenode.type, 'quals'): # else, probable syntax error anyway
if typenode.type.quals[-3:] == ['volatile', 'volatile', 'const']:
abi = '__stdcall'
return model.RawFunctionType(tuple(args), result, ellipsis, abi)
def _as_func_arg(self, type, quals):
if isinstance(type, model.ArrayType):
return model.PointerType(type.item, quals)
elif isinstance(type, model.RawFunctionType):
return type.as_function_pointer()
else:
return type
def _get_struct_union_enum_type(self, kind, type, name=None, nested=False):
# First, a level of caching on the exact 'type' node of the AST.
# This is obscure, but needed because pycparser "unrolls" declarations
# such as "typedef struct { } foo_t, *foo_p" and we end up with
# an AST that is not a tree, but a DAG, with the "type" node of the
# two branches foo_t and foo_p of the trees being the same node.
# It's a bit silly but detecting "DAG-ness" in the AST tree seems
# to be the only way to distinguish this case from two independent
# structs. See test_struct_with_two_usages.
try:
return self._structnode2type[type]
except KeyError:
pass
#
# Note that this must handle parsing "struct foo" any number of
# times and always return the same StructType object. Additionally,
# one of these times (not necessarily the first), the fields of
# the struct can be specified with "struct foo { ...fields... }".
# If no name is given, then we have to create a new anonymous struct
# with no caching; in this case, the fields are either specified
# right now or never.
#
force_name = name
name = type.name
#
# get the type or create it if needed
if name is None:
# 'force_name' is used to guess a more readable name for
# anonymous structs, for the common case "typedef struct { } foo".
if force_name is not None:
explicit_name = '$%s' % force_name
else:
self._anonymous_counter += 1
explicit_name = '$%d' % self._anonymous_counter
tp = None
else:
explicit_name = name
key = '%s %s' % (kind, name)
tp, _ = self._declarations.get(key, (None, None))
#
if tp is None:
if kind == 'struct':
tp = model.StructType(explicit_name, None, None, None)
elif kind == 'union':
tp = model.UnionType(explicit_name, None, None, None)
elif kind == 'enum':
if explicit_name == '__dotdotdot__':
raise CDefError("Enums cannot be declared with ...")
tp = self._build_enum_type(explicit_name, type.values)
else:
raise AssertionError("kind = %r" % (kind,))
if name is not None:
self._declare(key, tp)
else:
if kind == 'enum' and type.values is not None:
raise NotImplementedError(
"enum %s: the '{}' declaration should appear on the first "
"time the enum is mentioned, not later" % explicit_name)
if not tp.forcename:
tp.force_the_name(force_name)
if tp.forcename and '$' in tp.name:
self._declare('anonymous %s' % tp.forcename, tp)
#
self._structnode2type[type] = tp
#
# enums: done here
if kind == 'enum':
return tp
#
# is there a 'type.decls'? If yes, then this is the place in the
# C sources that declare the fields. If no, then just return the
# existing type, possibly still incomplete.
if type.decls is None:
return tp
#
if tp.fldnames is not None:
raise CDefError("duplicate declaration of struct %s" % name)
fldnames = []
fldtypes = []
fldbitsize = []
fldquals = []
for decl in type.decls:
if (isinstance(decl.type, pycparser.c_ast.IdentifierType) and
''.join(decl.type.names) == '__dotdotdot__'):
# XXX pycparser is inconsistent: 'names' should be a list
# of strings, but is sometimes just one string. Use
# str.join() as a way to cope with both.
self._make_partial(tp, nested)
continue
if decl.bitsize is None:
bitsize = -1
else:
bitsize = self._parse_constant(decl.bitsize)
self._partial_length = False
type, fqual = self._get_type_and_quals(decl.type,
partial_length_ok=True)
if self._partial_length:
self._make_partial(tp, nested)
if isinstance(type, model.StructType) and type.partial:
self._make_partial(tp, nested)
fldnames.append(decl.name or '')
fldtypes.append(type)
fldbitsize.append(bitsize)
fldquals.append(fqual)
tp.fldnames = tuple(fldnames)
tp.fldtypes = tuple(fldtypes)
tp.fldbitsize = tuple(fldbitsize)
tp.fldquals = tuple(fldquals)
if fldbitsize != [-1] * len(fldbitsize):
if isinstance(tp, model.StructType) and tp.partial:
raise NotImplementedError("%s: using both bitfields and '...;'"
% (tp,))
tp.packed = self._options.get('packed')
if tp.completed: # must be re-completed: it is not opaque any more
tp.completed = 0
self._recomplete.append(tp)
return tp
def _make_partial(self, tp, nested):
if not isinstance(tp, model.StructOrUnion):
raise CDefError("%s cannot be partial" % (tp,))
if not tp.has_c_name() and not nested:
raise NotImplementedError("%s is partial but has no C name" %(tp,))
tp.partial = True
def _parse_constant(self, exprnode, partial_length_ok=False):
# for now, limited to expressions that are an immediate number
# or positive/negative number
if isinstance(exprnode, pycparser.c_ast.Constant):
s = exprnode.value
if '0' <= s[0] <= '9':
s = s.rstrip('uUlL')
try:
if s.startswith('0'):
return int(s, 8)
else:
return int(s, 10)
except ValueError:
if len(s) > 1:
if s.lower()[0:2] == '0x':
return int(s, 16)
elif s.lower()[0:2] == '0b':
return int(s, 2)
raise CDefError("invalid constant %r" % (s,))
elif s[0] == "'" and s[-1] == "'" and (
len(s) == 3 or (len(s) == 4 and s[1] == "\\")):
return ord(s[-2])
else:
raise CDefError("invalid constant %r" % (s,))
#
if (isinstance(exprnode, pycparser.c_ast.UnaryOp) and
exprnode.op == '+'):
return self._parse_constant(exprnode.expr)
#
if (isinstance(exprnode, pycparser.c_ast.UnaryOp) and
exprnode.op == '-'):
return -self._parse_constant(exprnode.expr)
# load previously defined int constant
if (isinstance(exprnode, pycparser.c_ast.ID) and
exprnode.name in self._int_constants):
return self._int_constants[exprnode.name]
#
if (isinstance(exprnode, pycparser.c_ast.ID) and
exprnode.name == '__dotdotdotarray__'):
if partial_length_ok:
self._partial_length = True
return '...'
raise FFIError(":%d: unsupported '[...]' here, cannot derive "
"the actual array length in this context"
% exprnode.coord.line)
#
if isinstance(exprnode, pycparser.c_ast.BinaryOp):
left = self._parse_constant(exprnode.left)
right = self._parse_constant(exprnode.right)
if exprnode.op == '+':
return left + right
elif exprnode.op == '-':
return left - right
elif exprnode.op == '*':
return left * right
elif exprnode.op == '/':
return self._c_div(left, right)
elif exprnode.op == '%':
return left - self._c_div(left, right) * right
elif exprnode.op == '<<':
return left << right
elif exprnode.op == '>>':
return left >> right
elif exprnode.op == '&':
return left & right
elif exprnode.op == '|':
return left | right
elif exprnode.op == '^':
return left ^ right
#
raise FFIError(":%d: unsupported expression: expected a "
"simple numeric constant" % exprnode.coord.line)
def _c_div(self, a, b):
result = a // b
if ((a < 0) ^ (b < 0)) and (a % b) != 0:
result += 1
return result
def _build_enum_type(self, explicit_name, decls):
if decls is not None:
partial = False
enumerators = []
enumvalues = []
nextenumvalue = 0
for enum in decls.enumerators:
if _r_enum_dotdotdot.match(enum.name):
partial = True
continue
if enum.value is not None:
nextenumvalue = self._parse_constant(enum.value)
enumerators.append(enum.name)
enumvalues.append(nextenumvalue)
self._add_constants(enum.name, nextenumvalue)
nextenumvalue += 1
enumerators = tuple(enumerators)
enumvalues = tuple(enumvalues)
tp = model.EnumType(explicit_name, enumerators, enumvalues)
tp.partial = partial
else: # opaque enum
tp = model.EnumType(explicit_name, (), ())
return tp
def include(self, other):
for name, (tp, quals) in other._declarations.items():
if name.startswith('anonymous $enum_$'):
continue # fix for test_anonymous_enum_include
kind = name.split(' ', 1)[0]
if kind in ('struct', 'union', 'enum', 'anonymous', 'typedef'):
self._declare(name, tp, included=True, quals=quals)
for k, v in other._int_constants.items():
self._add_constants(k, v)
def _get_unknown_type(self, decl):
typenames = decl.type.type.names
if typenames == ['__dotdotdot__']:
return model.unknown_type(decl.name)
if typenames == ['__dotdotdotint__']:
if self._uses_new_feature is None:
self._uses_new_feature = "'typedef int... %s'" % decl.name
return model.UnknownIntegerType(decl.name)
if typenames == ['__dotdotdotfloat__']:
# note: not for 'long double' so far
if self._uses_new_feature is None:
self._uses_new_feature = "'typedef float... %s'" % decl.name
return model.UnknownFloatType(decl.name)
raise FFIError(':%d: unsupported usage of "..." in typedef'
% decl.coord.line)
def _get_unknown_ptr_type(self, decl):
if decl.type.type.type.names == ['__dotdotdot__']:
return model.unknown_ptr_type(decl.name)
raise FFIError(':%d: unsupported usage of "..." in typedef'
% decl.coord.line)