wifi-tally_Oostendam/nodemcu-firmware/app/include/rtc/rtctime_internal.h

902 lines
30 KiB
C
Raw Normal View History

2021-09-27 19:52:27 +00:00
/*
* Copyright 2015 Dius Computing Pty Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
* - Neither the name of the copyright holders nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Bernd Meyer <bmeyer@dius.com.au>
* @author Johny Mattsson <jmattsson@dius.com.au>
*/
/*
* It is vital that this file is only included once in the entire
* system.
*/
#ifndef _RTCTIME_INTERNAL_H_
#define _RTCTIME_INTERNAL_H_
/*
* The ESP8266 has four distinct power states:
*
* 1) Active --- CPU and modem are powered and running
* 2) Modem Sleep --- CPU is active, but the RF section is powered down
* 3) Light Sleep --- CPU is halted, RF section is powered down. CPU gets reactivated by interrupt
* 4) Deep Sleep --- CPU and RF section are powered down, restart requires a full reset
*
* There are also three (relevant) sources of time information
*
* A) CPU Cycle Counter --- this is incremented at the CPU frequency in modes (1) and (2), but is
* halted in state (3), and gets reset in state (4). Highly precise 32 bit counter
* which overflows roughly every minute. Starts counting as soon as the CPU becomes
* active after a reset. Can cause an interrupt when it hits a particular value;
* This interrupt (and the register that determines the comparison value) are not
* used by the system software, and are available for user code to use.
*
* B) Free Running Counter 2 --- This is a peripheral which gets configured to run at 1/256th of the
* CPU frequency. It is also active in states (1) and (2), and is halted in state (3).
* However, the ESP system code will adjust its value across periods of Light Sleep
* that it initiates, so *in effect*, this counter kind-of remains active in (3).
* While in states (1) and (2), it is as precise as the CPU Cycle. While in state (3),
* however, it is only as precise as the system's knowledge of how long the sleep
* period was. This knowledge is limited (it is based on (C), see below).
* The Free Running Counter 2 is a 32 bit counter which overflows roughly every
* 4 hours, and typically has a resolution of 3.2us. It starts counting as soon as
* it gets configured, which is considerably *after* the time of reset, and in fact
* is not done by the ESP boot loader, but rather by the loaded-from-SPI-flash system
* code. This means it is not yet running when the boot loader calls the configured
* entry point, and the time between reset and the counter starting to run depends on
* the size of code/data to be copied into RAM from the flash.
* The FRC2 is also used by the system software for its internal time keeping, i.e. for
* dealing with any registered ETS_Timers (and derived-from-them timer functionality).
*
* C) "Real Time Clock" --- This peripheral runs from an internal low power RC oscillator, at a frequency
* somewhere in the 120-200kHz range. It keeps running in all power states, and is in
* fact the time source responsible for generating an interrupt (state (3)) or reset
* (state (4)) to end Light and Deep Sleep periods. However, it *does* get reset to
* zero after a reset, even one it caused itself.
* The major issue with the RTC is that it is not using a crystal (support for an
* external 32.768kHz crystal was planned at one point, but was removed from the
* final ESP8266 design), and thus the frequency of the oscillator is dependent on
* a number of parameters, including the chip temperature. The ESP's system software
* contains code to "calibrate" exactly how long one cycle of the oscillator is, and
* uses that calibration to work out how many cycles to sleep for modes (3) and (4).
* However, once the chip has entered a low power state, it quickly cools down, which
* results in the oscillator running faster than during calibration, leading to early
* wakeups. This effect is small (even in relative terms) for short sleep periods (because
* the temperature does not change much over a few hundred milliseconds), but can get
* quite large for extended sleeps.
*
* For added fun, a typical ESP8266 module starts up running the CPU (and thus the cycle counter) at 52MHz,
* but usually this will be switched to 80MHz on application startup, and can later be switched to 160MHz
* under user control. Meanwhile, the FRC2 is usually kept running at 80MHz/256, regardless of the CPU
* clock.
*
*
*
* The code in this file implements a best-effort time keeping solution for the ESP. It keeps track of time
* by switching between various time sources. All state is kept in RAM associated with the RTC, which is
* maintained across Deep Sleep periods.
*
* Internally, time is managed in units of cycles of a (hypothetical) 2080MHz clock, e.g. in units
* of 0.4807692307ns. The reason for this choice is that this covers both the FRC2 and the cycle
* counter periods, while running at 52MHz, 80MHz or 160MHz.
*
* At any given time, the time status indicates whether the FRC2 or the Cycle Counter is the current time
* source, how many unit cycles each LSB of the chosen time source "is worth", and what the unix time in
* unit cycles was when the time source was at 0.
* Given that either time source overflows its 32 bit counter in a relatively short time, the code also
* maintains a "last read 32 bit value" for the selected time source, and on each subsequent read will
* check for overflow and, if necessary, adjust the unix-time-at-time-source-being-zero appropriately.
* In order to avoid missing overflows, a timer gets installed which requests time every 40 seconds.
*
* To avoid race conditions, *none* of the code here must be called from an interrupt context unless
* the user can absolutely guarantee that there will never be a clock source rollover (which can be the
* case for sensor applications that only stay awake for a few seconds). And even then, do so at your
* own risk.
*
*
* Deep sleep is handled by moving the time offset forward *before* the sleep to the scheduled wakeup
* time. Due to the nature of the RTC, the actual wakeup time may be a little bit different, but
* it's the best that can be done. The code attempts to come up with a better calibration value if
* authoritative time is available both before and after a sleep; This works reasonably well, but of
* course is still merely a guess, which may well be somewhat wrong.
*
*/
#include <osapi.h>
#include <ets_sys.h>
#include "rom.h"
#include "rtcaccess.h"
#include "user_interface.h"
// Layout of the RTC storage space:
//
// 0: Magic, and time source. Meaningful values are
// * RTC_TIME_MAGIC_SLEEP: Indicates that the device went to sleep under RTCTIME control.
// This is the magic expected on deep sleep wakeup; Any other status means we lost track
// of time, and whatever time offset is stored in state is invalid and must be cleared.
// * RTC_TIME_MAGIC_CCOUNT: Time offset is relative to the Cycle Counter.
// * RTC_TIME_MAGIC_FRC2: Time offset is relative to the Free Running Counter.
// Any values other than these indicate that RTCTIME is not in use and no state is available, nor should
// RTCTIME make any changes to any of the RTC memory space.
//
// 1/2: UNIX time in Unit Cycles when time source had value 0 (64 bit, lower 32 bit in 1, upper in 2).
// If 0, then time is unknown.
// 3: Last used value of time source (32 bit unsigned). If current time source is less, then a rollover happened
// 4: Length of a time source cycle in Unit Cycles.
// 5: cached result of sleep clock calibration. Has the format of system_rtc_clock_cali_proc(),
// or 0 if not available (see 6/7 below)
// 6: Number of microseconds we tried to sleep, or 0 if we didn't sleep since last calibration, ffffffff if invalid
// 7: Number of RTC cycles we decided to sleep, or 0 if we didn't sleep since last calibration, ffffffff if invalid
// 8: Number of microseconds which we add to (1/2) to avoid time going backwards
// 9: microsecond value returned in the last gettimeofday() to "user space".
//
// Entries 6-9 are needed because the RTC cycles/second appears quite temperature dependent,
// and thus is heavily influenced by what else the chip is doing. As such, any calibration against
// the crystal-provided clock (which necessarily would have to happen while the chip is active and
// burning a few milliwatts) will be significantly different from the actual frequency during deep
// sleep.
// Thus, in order to calibrate for deep sleep conditions, we keep track of total sleep microseconds
// and total sleep clock cycles between settimeofday() calls (which presumably are NTP driven), and
// adjust the calibration accordingly on each settimeofday(). This will also track frequency changes
// due to ambient temperature changes.
// 8/9 get used when a settimeofday() would result in turning back time. As that can cause all sorts
// of ugly issues, we *do* adjust (1/2), but compensate by making the same adjustment to (8). Then each
// time gettimeofday() is called, we inspect (9) and determine how much time has passed since the last
// call (yes, this gets it wrong if more than a second has passed, but not in a way that causes issues)
// and try to take up to 6% of that time away from (8) until (8) reaches 0. Also, whenever we go to
// deep sleep, we add (8) to the sleep time, thus catching up all in one go.
// Note that for calculating the next sample-aligned wakeup, we need to use the post-adjustment
// timeofday(), but for calculating actual sleep time, we use the pre-adjustment one, thus bringing
// things back into line.
//
#define RTC_TIME_BASE 0 // Where the RTC timekeeping block starts in RTC user memory slots
#define RTC_TIME_MAGIC_CCOUNT 0x44695573
#define RTC_TIME_MAGIC_FRC2 (RTC_TIME_MAGIC_CCOUNT+1)
#define RTC_TIME_MAGIC_SLEEP (RTC_TIME_MAGIC_CCOUNT+2)
#define UNITCYCLE_MHZ 2080
#define CPU_OVERCLOCK_MHZ 160
#define CPU_DEFAULT_MHZ 80
#define CPU_BOOTUP_MHZ 52
#ifdef RTC_DEBUG_ENABLED
#warn this does not really work....
#define RTC_DBG(...) do { if (rtc_dbg_enabled == 'R') { dbg_printf(__VA_ARGS__); } } while (0)
static char rtc_dbg_enabled;
#define RTC_DBG_ENABLED() rtc_dbg_enabled = 'R'
#define RTC_DBG_NOT_ENABLED() rtc_dbg_enabled = 0
#else
#define RTC_DBG(...)
#define RTC_DBG_ENABLED()
#define RTC_DBG_NOT_ENABLED()
#endif
#define NOINIT_ATTR __attribute__((section(".noinit")))
// RTCTIME storage
#define RTC_TIME_MAGIC_POS (RTC_TIME_BASE+0)
#define RTC_CYCLEOFFSETL_POS (RTC_TIME_BASE+1)
#define RTC_CYCLEOFFSETH_POS (RTC_TIME_BASE+2)
#define RTC_LASTSOURCEVAL_POS (RTC_TIME_BASE+3)
#define RTC_SOURCECYCLEUNITS_POS (RTC_TIME_BASE+4)
#define RTC_CALIBRATION_POS (RTC_TIME_BASE+5)
#define RTC_SLEEPTOTALUS_POS (RTC_TIME_BASE+6)
#define RTC_SLEEPTOTALCYCLES_POS (RTC_TIME_BASE+7)
//#define RTC_TODOFFSETUS_POS (RTC_TIME_BASE+8)
//#define RTC_LASTTODUS_POS (RTC_TIME_BASE+9)
#define RTC_USRATE_POS (RTC_TIME_BASE+8)
NOINIT_ATTR uint32_t rtc_time_magic;
NOINIT_ATTR uint64_t rtc_cycleoffset;
NOINIT_ATTR uint32_t rtc_lastsourceval;
NOINIT_ATTR uint32_t rtc_sourcecycleunits;
NOINIT_ATTR uint32_t rtc_calibration;
NOINIT_ATTR uint32_t rtc_sleeptotalus;
NOINIT_ATTR uint32_t rtc_sleeptotalcycles;
NOINIT_ATTR uint64_t rtc_usatlastrate;
NOINIT_ATTR uint64_t rtc_rateadjustedus;
NOINIT_ATTR uint32_t rtc_todoffsetus;
NOINIT_ATTR uint32_t rtc_lasttodus;
NOINIT_ATTR uint32_t rtc_usrate;
struct rtc_timeval
{
uint32_t tv_sec;
uint32_t tv_usec;
};
static void bbram_load() {
rtc_time_magic = rtc_mem_read(RTC_TIME_MAGIC_POS);
rtc_cycleoffset = rtc_mem_read64(RTC_CYCLEOFFSETL_POS);
rtc_lastsourceval = rtc_mem_read(RTC_LASTSOURCEVAL_POS);
rtc_sourcecycleunits = rtc_mem_read(RTC_SOURCECYCLEUNITS_POS);
rtc_calibration = rtc_mem_read(RTC_CALIBRATION_POS);
rtc_sleeptotalus = rtc_mem_read(RTC_SLEEPTOTALUS_POS);
rtc_sleeptotalcycles = rtc_mem_read(RTC_SLEEPTOTALCYCLES_POS);
rtc_usrate = rtc_mem_read(RTC_USRATE_POS);
}
static void bbram_save() {
RTC_DBG("bbram_save\n");
rtc_mem_write(RTC_TIME_MAGIC_POS , rtc_time_magic);
rtc_mem_write64(RTC_CYCLEOFFSETL_POS , rtc_cycleoffset);
rtc_mem_write(RTC_LASTSOURCEVAL_POS , rtc_lastsourceval);
rtc_mem_write(RTC_SOURCECYCLEUNITS_POS , rtc_sourcecycleunits);
rtc_mem_write(RTC_CALIBRATION_POS , rtc_calibration);
rtc_mem_write(RTC_SLEEPTOTALUS_POS , rtc_sleeptotalus);
rtc_mem_write(RTC_SLEEPTOTALCYCLES_POS , rtc_sleeptotalcycles);
rtc_mem_write(RTC_USRATE_POS , rtc_usrate);
}
static inline uint64_t div2080(uint64_t n) {
n = n >> 5;
uint64_t t = n >> 7;
uint64_t q = t + (t >> 1) + (t >> 2);
q += q >> 3;
q += q >> 12;
q += q >> 24;
q += q >> 48;
uint32_t r = (uint32_t) n - (uint32_t) q * 65;
uint32_t off = (r - (r >> 6)) >> 6;
q = q + off;
return q;
}
static uint32_t div1m(uint32_t *rem, unsigned long long n) {
// 0 -> 0002000000000000 sub
// 0 >> 5 - 0 >> 19 + [-1] -> 00020fffc0000000 add
// 0 >> 9 - 0 >> 6 + [-1] -> 000208ffc0000000 add
// 2 >> 12 - 2 >> 23 -> 000000208bea0080 sub
uint64_t q1 = (n >> 5) - (n >> 19) + n;
uint64_t q2 = q1 + (n >> 9) - (n >> 6);
uint64_t q3 = (q2 >> 12) - (q2 >> 23);
uint64_t q = q1 - n + q2 - q3;
q = q >> 20;
uint32_t r = (uint32_t) n - (uint32_t) q * 1000000;
if (r >= 1000000) {
r -= 1000000;
q++;
}
*rem = r;
return q;
}
static inline uint64_t rtc_time_get_now_us_adjusted();
#define rtc_time_get_magic() rtc_time_magic
static inline bool rtc_time_check_sleep_magic(void)
{
uint32_t magic=rtc_time_get_magic();
return (magic==RTC_TIME_MAGIC_SLEEP);
}
static inline bool rtc_time_check_wake_magic(void)
{
uint32_t magic=rtc_time_get_magic();
return (magic==RTC_TIME_MAGIC_FRC2 || magic==RTC_TIME_MAGIC_CCOUNT);
}
static inline bool rtc_time_check_magic(void)
{
uint32_t magic=rtc_time_get_magic();
return (magic==RTC_TIME_MAGIC_FRC2 || magic==RTC_TIME_MAGIC_CCOUNT || magic==RTC_TIME_MAGIC_SLEEP);
}
static void rtc_time_set_magic(uint32_t new_magic)
{
RTC_DBG("Set magic to %08x\n", new_magic);
rtc_time_magic = new_magic;
bbram_save();
}
static inline void rtc_time_set_sleep_magic(void)
{
rtc_time_set_magic(RTC_TIME_MAGIC_SLEEP);
}
static inline void rtc_time_set_ccount_magic(void)
{
rtc_time_set_magic(RTC_TIME_MAGIC_CCOUNT);
}
static inline void rtc_time_set_frc2_magic(void)
{
rtc_time_set_magic(RTC_TIME_MAGIC_FRC2);
}
static inline void rtc_time_unset_magic(void)
{
rtc_time_set_magic(0);
}
static inline uint32_t rtc_time_read_raw(void)
{
return rtc_reg_read(RTC_COUNTER_ADDR);
}
static inline uint32_t rtc_time_read_raw_ccount(void)
{
return xthal_get_ccount();
}
static inline uint32_t rtc_time_read_raw_frc2(void)
{
return NOW();
}
// Get us the number of Unit Cycles that have elapsed since the source was 0.
// Note: This may in fact adjust the stored cycles-when-source-was-0 entry, so
// we need to make sure we call this before reading that entry
static inline uint64_t rtc_time_source_offset(void)
{
uint32_t magic=rtc_time_get_magic();
uint32_t raw=0;
switch (magic)
{
case RTC_TIME_MAGIC_CCOUNT: raw=rtc_time_read_raw_ccount(); break;
case RTC_TIME_MAGIC_FRC2: raw=rtc_time_read_raw_frc2(); break;
default: return 0; // We are not in a position to offer time
}
uint32_t multiplier = rtc_sourcecycleunits;
uint32_t previous = rtc_lastsourceval;
if (raw<previous)
{ // We had a rollover.
uint64_t to_add=(1ULL<<32)*multiplier;
uint64_t base = rtc_cycleoffset;
if (base)
rtc_cycleoffset = base + to_add;
}
rtc_lastsourceval = raw;
return ((uint64_t)raw)*multiplier;
}
static inline uint64_t rtc_time_unix_unitcycles(void)
{
// Note: The order of these two must be maintained, as the first call might change the outcome of the second
uint64_t offset=rtc_time_source_offset();
uint64_t base = rtc_cycleoffset;
if (!base)
return 0; // No known time
return base+offset;
}
static inline uint64_t rtc_time_unix_us(void)
{
#if UNITCYCLE_MHZ == 2080
return div2080(rtc_time_unix_unitcycles());
#else
#error UNITCYCLE_MHZ has an odd value
return rtc_time_unix_unitcycles()/UNITCYCLE_MHZ;
#endif
}
static inline void rtc_time_register_time_reached(uint32_t s, uint32_t us)
{
rtc_lasttodus = us;
}
static inline uint32_t rtc_time_us_since_time_reached(uint32_t s, uint32_t us)
{
uint32_t lastus=rtc_lasttodus;
if (us<lastus)
us+=1000000;
return us-lastus;
}
// A small sanity check so sleep times go completely nuts if someone
// has provided wrong timestamps to gettimeofday.
static inline bool rtc_time_calibration_is_sane(uint32_t cali)
{
return (cali>=(4<<12)) && (cali<=(10<<12));
}
static inline uint32_t rtc_time_get_calibration(void)
{
uint32_t cal=rtc_time_check_magic()?rtc_calibration:0;
if (!cal)
{
// Make a first guess, most likely to be rather bad, but better then nothing.
#ifndef BOOTLOADER_CODE // This will pull in way too much of the system for the bootloader to handle.
ets_delay_us(200);
cal=system_rtc_clock_cali_proc();
rtc_calibration = cal;
#else
cal=6<<12;
#endif
}
return cal;
}
static inline void rtc_time_invalidate_calibration(void)
{
rtc_calibration = 0;
}
static inline uint64_t rtc_time_us_to_ticks(uint64_t us)
{
uint32_t cal=rtc_time_get_calibration();
return (us<<12)/cal;
}
static inline uint64_t rtc_time_get_now_us_raw(void)
{
if (!rtc_time_check_magic())
return 0;
return rtc_time_unix_us();
}
static inline uint64_t rtc_time_get_now_us_adjusted(void)
{
uint64_t raw=rtc_time_get_now_us_raw();
if (!raw)
return 0;
return raw+rtc_todoffsetus;
}
static inline void rtc_time_add_sleep_tracking(uint32_t us, uint32_t cycles)
{
if (rtc_time_check_magic())
{
// us is the one that will grow faster...
uint32_t us_before=rtc_sleeptotalus;
uint32_t us_after=us_before+us;
uint32_t cycles_after=rtc_sleeptotalcycles+cycles;
if (us_after<us_before) // Give up if it would cause an overflow
{
us_after=cycles_after=0xffffffff;
}
rtc_sleeptotalus = us_after;
rtc_sleeptotalcycles = cycles_after;
}
}
extern void rtc_time_enter_deep_sleep_final(void);
static void rtc_time_enter_deep_sleep_us(uint32_t us)
{
rtc_reg_write(0,0);
rtc_reg_write(0,rtc_reg_read(0)&0xffffbfff);
rtc_reg_write(0,rtc_reg_read(0)|0x30);
rtc_reg_write(0x44,4);
rtc_reg_write(0x0c,0x00010010);
rtc_reg_write(0x48,(rtc_reg_read(0x48)&0xffff01ff)|0x0000fc00);
rtc_reg_write(0x48,(rtc_reg_read(0x48)&0xfffffe00)|0x00000080);
rtc_reg_write(RTC_TARGET_ADDR,rtc_time_read_raw()+136);
rtc_reg_write(0x18,8);
rtc_reg_write(0x08,0x00100010);
ets_delay_us(20);
rtc_reg_write(0x9c,17);
rtc_reg_write(0xa0,3);
rtc_reg_write(0x0c,0x640c8);
rtc_reg_write(0,rtc_reg_read(0)&0xffffffcf);
uint32_t cycles=rtc_time_us_to_ticks(us);
rtc_time_add_sleep_tracking(us,cycles);
if (rtc_time_check_wake_magic())
rtc_time_set_sleep_magic();
else
bbram_save();
rtc_reg_write(RTC_TARGET_ADDR,rtc_time_read_raw()+cycles);
rtc_reg_write(0x9c,17);
rtc_reg_write(0xa0,3);
volatile uint32_t* dport4=(volatile uint32_t*)0x3ff00004;
*dport4&=0xfffffffe;
rtc_reg_write(0x40,-1);
rtc_reg_write(0x44,32);
rtc_reg_write(0x10,0);
rtc_time_enter_deep_sleep_final();
}
static void rtc_time_deep_sleep_us(uint32_t us)
{
if (rtc_time_check_magic())
{
uint32_t to_adjust=rtc_todoffsetus;
if (to_adjust)
{
us+=to_adjust;
rtc_todoffsetus = 0;
}
uint64_t now=rtc_time_get_now_us_raw(); // Now the same as _adjusted()
if (now)
{ // Need to maintain the clock first. When we wake up, counter will be 0
uint64_t wakeup=now+us;
uint64_t wakeup_cycles=wakeup*UNITCYCLE_MHZ;
// Probly should factor in the rate here TODO
rtc_cycleoffset = wakeup_cycles;
}
}
rtc_time_enter_deep_sleep_us(us);
}
static inline void rtc_time_deep_sleep_until_aligned(uint32_t align, uint32_t min_sleep_us)
{
uint64_t now=rtc_time_get_now_us_adjusted();
uint64_t then=now+min_sleep_us;
if (align)
{
then+=align-1;
then-=(then%align);
}
rtc_time_deep_sleep_us(then-now);
}
static void rtc_time_reset(bool clear_cali)
{
rtc_cycleoffset = 0;
rtc_sleeptotalus = 0;
rtc_sleeptotalcycles = 0;
rtc_todoffsetus = 0;
rtc_lasttodus = 0;
rtc_sourcecycleunits = 0;
rtc_lastsourceval = 0;
rtc_usatlastrate = 0;
rtc_rateadjustedus = 0;
rtc_usrate = 0;
if (clear_cali)
rtc_calibration = 0;
bbram_save();
}
static inline bool rtc_time_have_time(void)
{
return (rtc_time_check_magic() && rtc_cycleoffset!=0);
}
static void rtc_time_select_frc2_source()
{
// FRC2 always runs at 1/256th of the default 80MHz clock, even if the actual clock is different
uint32_t new_multiplier=(256*UNITCYCLE_MHZ+CPU_DEFAULT_MHZ/2)/CPU_DEFAULT_MHZ;
uint64_t now;
uint32_t before;
uint32_t after;
// Deal with race condition here...
do {
before=rtc_time_read_raw_frc2();
now=rtc_time_unix_unitcycles();
after=rtc_time_read_raw_frc2();
} while (before>after);
if (rtc_time_have_time())
{
uint64_t offset=(uint64_t)after*new_multiplier;
rtc_cycleoffset = now-offset;
rtc_lastsourceval = after;
}
rtc_sourcecycleunits = new_multiplier;
rtc_time_set_magic(RTC_TIME_MAGIC_FRC2);
}
static void rtc_time_select_ccount_source(uint32_t mhz, bool first)
{
uint32_t new_multiplier=(UNITCYCLE_MHZ+mhz/2)/mhz;
// Check that
if (new_multiplier*mhz!=UNITCYCLE_MHZ)
ets_printf("Trying to use unsuitable frequency: %dMHz\n",mhz);
if (first)
{ // The ccounter has been running at this rate since startup, and the offset is set accordingly
rtc_lastsourceval = 0;
rtc_sourcecycleunits = new_multiplier;
rtc_time_set_magic(RTC_TIME_MAGIC_CCOUNT);
return;
}
uint64_t now;
uint32_t before;
uint32_t after;
// Deal with race condition here...
do {
before=rtc_time_read_raw_ccount();
now=rtc_time_unix_unitcycles();
after=rtc_time_read_raw_ccount();
} while (before>after);
if (rtc_time_have_time())
{
uint64_t offset=(uint64_t)after*new_multiplier;
rtc_cycleoffset = now-offset;
rtc_lastsourceval = after;
}
rtc_sourcecycleunits = new_multiplier;
rtc_time_set_magic(RTC_TIME_MAGIC_CCOUNT);
}
static inline void rtc_time_switch_to_ccount_frequency(uint32_t mhz)
{
if (rtc_time_check_magic())
rtc_time_select_ccount_source(mhz,false);
}
static inline void rtc_time_switch_to_system_clock(void)
{
if (rtc_time_check_magic())
rtc_time_select_frc2_source();
}
static inline void rtc_time_tmrfn(void* arg);
#include "pm/swtimer.h"
static void rtc_time_install_timer(void)
{
static ETSTimer tmr;
os_timer_setfn(&tmr,rtc_time_tmrfn,NULL);
SWTIMER_REG_CB(rtc_time_tmrfn, SWTIMER_RESUME);
//I believe the function rtc_time_tmrfn compensates for drift in the clock and updates rtc time accordingly, This timer should probably be resumed
os_timer_arm(&tmr,10000,1);
}
#if 0 // Kept around for reference....
static inline void rtc_time_ccount_wrap_handler(void* dst_v, uint32_t sp)
{
uint32_t off_h=rtc_mem_read(RTC_CYCLEOFFSETH_POS);
if (rtc_time_check_magic() && off_h)
{
rtc_mem_write(RTC_CYCLEOFFSETH_POS,off_h+1);
}
xthal_set_ccompare(0,0); // This resets the interrupt condition
}
static inline void rtc_time_install_wrap_handler(void)
{
xthal_set_ccompare(0,0); // Recognise a ccounter wraparound
ets_isr_attach(RTC_TIME_CCOMPARE_INT,rtc_time_ccount_wrap_handler,NULL);
ets_isr_unmask(1<<RTC_TIME_CCOMPARE_INT);
}
#endif
// This switches from MAGIC_SLEEP to MAGIC_CCOUNT, with ccount running at bootup frequency (i.e. 52MHz).
// To be called as early as possible, potententially as the first thing in an overridden entry point.
static void rtc_time_register_bootup(void)
{
RTC_DBG_NOT_ENABLED();
bbram_load();
uint32_t reset_reason=rtc_get_reset_reason();
#ifndef BOOTLOADER_CODE
static const bool erase_calibration=true;
#else
// In the boot loader, any leftover calibration is going to be better than anything we can
// come up with....
static const bool erase_calibration=false;
#endif
if (rtc_time_check_sleep_magic())
{
if (reset_reason!=2) // This was *not* a proper wakeup from a deep sleep. All our time keeping is f*cked!
rtc_time_reset(erase_calibration); // Possibly keep the calibration, it should still be good
rtc_time_select_ccount_source(CPU_BOOTUP_MHZ,true);
rtc_todoffsetus = 0;
rtc_rateadjustedus = rtc_usatlastrate = rtc_time_get_now_us_adjusted();
RTC_DBG_ENABLED();
return;
}
// We did not go to sleep properly. All our time keeping is f*cked!
rtc_time_reset(erase_calibration); // Possibly keep the calibration, it should still be good
RTC_DBG_ENABLED();
}
// Call this from the nodemcu entry point, i.e. just before we switch from 52MHz to 80MHz
static inline void rtc_time_switch_clocks(void)
{
rtc_time_switch_to_ccount_frequency(CPU_DEFAULT_MHZ);
}
// Call this exactly once, from user_init, i.e. once the operating system is up and running
static inline void rtc_time_switch_system(void)
{
rtc_time_install_timer();
rtc_time_switch_to_system_clock();
}
static inline void rtc_time_prepare(void)
{
rtc_time_reset(true);
rtc_time_select_frc2_source();
}
static int32_t rtc_time_adjust_delta_by_rate(int32_t delta) {
return (delta * ((1ull << 32) + (int) rtc_usrate)) >> 32;
}
static uint64_t rtc_time_adjust_us_by_rate(uint64_t us, int force) {
uint64_t usoff = us - rtc_usatlastrate;
uint64_t usadj = (usoff * ((1ull << 32) + (int) rtc_usrate)) >> 32;
usadj = usadj + rtc_rateadjustedus;
if (usoff > 1000000000 || force) {
rtc_usatlastrate = us;
rtc_rateadjustedus = usadj;
}
return usadj;
}
static inline void rtc_time_set_rate(int32_t rate) {
uint64_t now=rtc_time_get_now_us_adjusted();
rtc_time_adjust_us_by_rate(now, 1);
rtc_usrate = rate;
}
static inline int32_t rtc_time_get_rate() {
return rtc_usrate;
}
static inline void rtc_time_tmrfn(void* arg)
{
uint64_t now=rtc_time_get_now_us_adjusted();
rtc_time_adjust_us_by_rate(now, 0);
rtc_time_source_offset();
}
static inline void rtc_time_gettimeofday(struct rtc_timeval* tv)
{
uint64_t now=rtc_time_get_now_us_adjusted();
now = rtc_time_adjust_us_by_rate(now, 0);
uint32_t usec;
uint32_t sec = div1m(&usec, now);
uint32_t to_adjust=rtc_todoffsetus;
if (to_adjust)
{
uint32_t us_passed=rtc_time_us_since_time_reached(sec,usec);
uint32_t adjust=us_passed>>4;
if (adjust)
{
if (adjust>to_adjust)
adjust=to_adjust;
to_adjust-=adjust;
now-=adjust;
sec = div1m(&usec, now);
rtc_todoffsetus = to_adjust;
}
}
tv->tv_sec=sec;
tv->tv_usec=usec;
rtc_time_register_time_reached(sec,usec);
}
static void rtc_time_settimeofday(const struct rtc_timeval* tv)
{
if (!rtc_time_check_magic())
return;
uint32_t sleep_us=rtc_sleeptotalus;
uint32_t sleep_cycles=rtc_sleeptotalcycles;
// At this point, the CPU clock will definitely be at the default rate (nodemcu fully booted)
uint64_t now_esp_us=rtc_time_get_now_us_adjusted();
now_esp_us = rtc_time_adjust_us_by_rate(now_esp_us, 1);
uint64_t now_ntp_us=((uint64_t)tv->tv_sec)*1000000+tv->tv_usec;
int64_t diff_us=now_esp_us-now_ntp_us;
// Store the *actual* time.
uint64_t target_unitcycles=now_ntp_us*UNITCYCLE_MHZ;
uint64_t sourcecycles=rtc_time_source_offset();
rtc_cycleoffset = target_unitcycles-sourcecycles;
// calibrate sleep period based on difference between expected time and actual time
if (sleep_us>0 && sleep_us<0xffffffff &&
sleep_cycles>0 && sleep_cycles<0xffffffff &&
tv->tv_sec)
{
uint64_t actual_sleep_us=sleep_us-diff_us;
uint32_t cali=(actual_sleep_us<<12)/sleep_cycles;
if (rtc_time_calibration_is_sane(cali))
rtc_calibration = cali;
}
rtc_sleeptotalus = 0;
rtc_sleeptotalcycles = 0;
rtc_usatlastrate = now_ntp_us;
rtc_rateadjustedus = now_ntp_us;
rtc_usrate = 0;
// Deal with time adjustment if necessary
if (diff_us>0 && tv->tv_sec) // Time went backwards. Avoid that....
{
if (diff_us>0xffffffffULL)
diff_us=0xffffffffULL;
now_ntp_us+=diff_us;
} else {
diff_us=0;
}
rtc_todoffsetus = diff_us;
uint32_t now_s=now_ntp_us/1000000;
uint32_t now_us=now_ntp_us%1000000;
rtc_time_register_time_reached(now_s,now_us);
}
#endif