436 lines
14 KiB
Python
436 lines
14 KiB
Python
|
from __future__ import division
|
||
|
|
||
|
import os
|
||
|
import math
|
||
|
import binascii
|
||
|
import sys
|
||
|
from hashlib import sha256
|
||
|
from six import PY2, int2byte, b, next
|
||
|
from . import der
|
||
|
from ._compat import normalise_bytes
|
||
|
|
||
|
# RFC5480:
|
||
|
# The "unrestricted" algorithm identifier is:
|
||
|
# id-ecPublicKey OBJECT IDENTIFIER ::= {
|
||
|
# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
|
||
|
|
||
|
oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
|
||
|
encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
|
||
|
|
||
|
# RFC5480:
|
||
|
# The ECDH algorithm uses the following object identifier:
|
||
|
# id-ecDH OBJECT IDENTIFIER ::= {
|
||
|
# iso(1) identified-organization(3) certicom(132) schemes(1)
|
||
|
# ecdh(12) }
|
||
|
|
||
|
oid_ecDH = (1, 3, 132, 1, 12)
|
||
|
|
||
|
# RFC5480:
|
||
|
# The ECMQV algorithm uses the following object identifier:
|
||
|
# id-ecMQV OBJECT IDENTIFIER ::= {
|
||
|
# iso(1) identified-organization(3) certicom(132) schemes(1)
|
||
|
# ecmqv(13) }
|
||
|
|
||
|
oid_ecMQV = (1, 3, 132, 1, 13)
|
||
|
|
||
|
if sys.version_info >= (3,):
|
||
|
|
||
|
def entropy_to_bits(ent_256):
|
||
|
"""Convert a bytestring to string of 0's and 1's"""
|
||
|
return bin(int.from_bytes(ent_256, "big"))[2:].zfill(len(ent_256) * 8)
|
||
|
|
||
|
|
||
|
else:
|
||
|
|
||
|
def entropy_to_bits(ent_256):
|
||
|
"""Convert a bytestring to string of 0's and 1's"""
|
||
|
return "".join(bin(ord(x))[2:].zfill(8) for x in ent_256)
|
||
|
|
||
|
|
||
|
if sys.version_info < (2, 7):
|
||
|
# Can't add a method to a built-in type so we are stuck with this
|
||
|
def bit_length(x):
|
||
|
return len(bin(x)) - 2
|
||
|
|
||
|
|
||
|
else:
|
||
|
|
||
|
def bit_length(x):
|
||
|
return x.bit_length() or 1
|
||
|
|
||
|
|
||
|
def orderlen(order):
|
||
|
return (1 + len("%x" % order)) // 2 # bytes
|
||
|
|
||
|
|
||
|
def randrange(order, entropy=None):
|
||
|
"""Return a random integer k such that 1 <= k < order, uniformly
|
||
|
distributed across that range. Worst case should be a mean of 2 loops at
|
||
|
(2**k)+2.
|
||
|
|
||
|
Note that this function is not declared to be forwards-compatible: we may
|
||
|
change the behavior in future releases. The entropy= argument (which
|
||
|
should get a callable that behaves like os.urandom) can be used to
|
||
|
achieve stability within a given release (for repeatable unit tests), but
|
||
|
should not be used as a long-term-compatible key generation algorithm.
|
||
|
"""
|
||
|
assert order > 1
|
||
|
if entropy is None:
|
||
|
entropy = os.urandom
|
||
|
upper_2 = bit_length(order - 2)
|
||
|
upper_256 = upper_2 // 8 + 1
|
||
|
while True: # I don't think this needs a counter with bit-wise randrange
|
||
|
ent_256 = entropy(upper_256)
|
||
|
ent_2 = entropy_to_bits(ent_256)
|
||
|
rand_num = int(ent_2[:upper_2], base=2) + 1
|
||
|
if 0 < rand_num < order:
|
||
|
return rand_num
|
||
|
|
||
|
|
||
|
class PRNG:
|
||
|
# this returns a callable which, when invoked with an integer N, will
|
||
|
# return N pseudorandom bytes. Note: this is a short-term PRNG, meant
|
||
|
# primarily for the needs of randrange_from_seed__trytryagain(), which
|
||
|
# only needs to run it a few times per seed. It does not provide
|
||
|
# protection against state compromise (forward security).
|
||
|
def __init__(self, seed):
|
||
|
self.generator = self.block_generator(seed)
|
||
|
|
||
|
def __call__(self, numbytes):
|
||
|
a = [next(self.generator) for i in range(numbytes)]
|
||
|
|
||
|
if PY2:
|
||
|
return "".join(a)
|
||
|
else:
|
||
|
return bytes(a)
|
||
|
|
||
|
def block_generator(self, seed):
|
||
|
counter = 0
|
||
|
while True:
|
||
|
for byte in sha256(
|
||
|
("prng-%d-%s" % (counter, seed)).encode()
|
||
|
).digest():
|
||
|
yield byte
|
||
|
counter += 1
|
||
|
|
||
|
|
||
|
def randrange_from_seed__overshoot_modulo(seed, order):
|
||
|
# hash the data, then turn the digest into a number in [1,order).
|
||
|
#
|
||
|
# We use David-Sarah Hopwood's suggestion: turn it into a number that's
|
||
|
# sufficiently larger than the group order, then modulo it down to fit.
|
||
|
# This should give adequate (but not perfect) uniformity, and simple
|
||
|
# code. There are other choices: try-try-again is the main one.
|
||
|
base = PRNG(seed)(2 * orderlen(order))
|
||
|
number = (int(binascii.hexlify(base), 16) % (order - 1)) + 1
|
||
|
assert 1 <= number < order, (1, number, order)
|
||
|
return number
|
||
|
|
||
|
|
||
|
def lsb_of_ones(numbits):
|
||
|
return (1 << numbits) - 1
|
||
|
|
||
|
|
||
|
def bits_and_bytes(order):
|
||
|
bits = int(math.log(order - 1, 2) + 1)
|
||
|
bytes = bits // 8
|
||
|
extrabits = bits % 8
|
||
|
return bits, bytes, extrabits
|
||
|
|
||
|
|
||
|
# the following randrange_from_seed__METHOD() functions take an
|
||
|
# arbitrarily-sized secret seed and turn it into a number that obeys the same
|
||
|
# range limits as randrange() above. They are meant for deriving consistent
|
||
|
# signing keys from a secret rather than generating them randomly, for
|
||
|
# example a protocol in which three signing keys are derived from a master
|
||
|
# secret. You should use a uniformly-distributed unguessable seed with about
|
||
|
# curve.baselen bytes of entropy. To use one, do this:
|
||
|
# seed = os.urandom(curve.baselen) # or other starting point
|
||
|
# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
|
||
|
# sk = SigningKey.from_secret_exponent(secexp, curve)
|
||
|
|
||
|
|
||
|
def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
|
||
|
# hash the seed, then turn the digest into a number in [1,order), but
|
||
|
# don't worry about trying to uniformly fill the range. This will lose,
|
||
|
# on average, four bits of entropy.
|
||
|
bits, _bytes, extrabits = bits_and_bytes(order)
|
||
|
if extrabits:
|
||
|
_bytes += 1
|
||
|
base = hashmod(seed).digest()[:_bytes]
|
||
|
base = "\x00" * (_bytes - len(base)) + base
|
||
|
number = 1 + int(binascii.hexlify(base), 16)
|
||
|
assert 1 <= number < order
|
||
|
return number
|
||
|
|
||
|
|
||
|
def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
|
||
|
# like string_to_randrange_truncate_bytes, but only lose an average of
|
||
|
# half a bit
|
||
|
bits = int(math.log(order - 1, 2) + 1)
|
||
|
maxbytes = (bits + 7) // 8
|
||
|
base = hashmod(seed).digest()[:maxbytes]
|
||
|
base = "\x00" * (maxbytes - len(base)) + base
|
||
|
topbits = 8 * maxbytes - bits
|
||
|
if topbits:
|
||
|
base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
|
||
|
number = 1 + int(binascii.hexlify(base), 16)
|
||
|
assert 1 <= number < order
|
||
|
return number
|
||
|
|
||
|
|
||
|
def randrange_from_seed__trytryagain(seed, order):
|
||
|
# figure out exactly how many bits we need (rounded up to the nearest
|
||
|
# bit), so we can reduce the chance of looping to less than 0.5 . This is
|
||
|
# specified to feed from a byte-oriented PRNG, and discards the
|
||
|
# high-order bits of the first byte as necessary to get the right number
|
||
|
# of bits. The average number of loops will range from 1.0 (when
|
||
|
# order=2**k-1) to 2.0 (when order=2**k+1).
|
||
|
assert order > 1
|
||
|
bits, bytes, extrabits = bits_and_bytes(order)
|
||
|
generate = PRNG(seed)
|
||
|
while True:
|
||
|
extrabyte = b("")
|
||
|
if extrabits:
|
||
|
extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits))
|
||
|
guess = string_to_number(extrabyte + generate(bytes)) + 1
|
||
|
if 1 <= guess < order:
|
||
|
return guess
|
||
|
|
||
|
|
||
|
def number_to_string(num, order):
|
||
|
l = orderlen(order)
|
||
|
fmt_str = "%0" + str(2 * l) + "x"
|
||
|
string = binascii.unhexlify((fmt_str % num).encode())
|
||
|
assert len(string) == l, (len(string), l)
|
||
|
return string
|
||
|
|
||
|
|
||
|
def number_to_string_crop(num, order):
|
||
|
l = orderlen(order)
|
||
|
fmt_str = "%0" + str(2 * l) + "x"
|
||
|
string = binascii.unhexlify((fmt_str % num).encode())
|
||
|
return string[:l]
|
||
|
|
||
|
|
||
|
def string_to_number(string):
|
||
|
return int(binascii.hexlify(string), 16)
|
||
|
|
||
|
|
||
|
def string_to_number_fixedlen(string, order):
|
||
|
l = orderlen(order)
|
||
|
assert len(string) == l, (len(string), l)
|
||
|
return int(binascii.hexlify(string), 16)
|
||
|
|
||
|
|
||
|
# these methods are useful for the sigencode= argument to SK.sign() and the
|
||
|
# sigdecode= argument to VK.verify(), and control how the signature is packed
|
||
|
# or unpacked.
|
||
|
|
||
|
|
||
|
def sigencode_strings(r, s, order):
|
||
|
r_str = number_to_string(r, order)
|
||
|
s_str = number_to_string(s, order)
|
||
|
return (r_str, s_str)
|
||
|
|
||
|
|
||
|
def sigencode_string(r, s, order):
|
||
|
"""
|
||
|
Encode the signature to raw format (:term:`raw encoding`)
|
||
|
|
||
|
It's expected that this function will be used as a `sigencode=` parameter
|
||
|
in :func:`ecdsa.keys.SigningKey.sign` method.
|
||
|
|
||
|
:param int r: first parameter of the signature
|
||
|
:param int s: second parameter of the signature
|
||
|
:param int order: the order of the curve over which the signature was
|
||
|
computed
|
||
|
|
||
|
:return: raw encoding of ECDSA signature
|
||
|
:rtype: bytes
|
||
|
"""
|
||
|
# for any given curve, the size of the signature numbers is
|
||
|
# fixed, so just use simple concatenation
|
||
|
r_str, s_str = sigencode_strings(r, s, order)
|
||
|
return r_str + s_str
|
||
|
|
||
|
|
||
|
def sigencode_der(r, s, order):
|
||
|
"""
|
||
|
Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`.
|
||
|
|
||
|
Encodes the signature to the following :term:`ASN.1` structure::
|
||
|
|
||
|
Ecdsa-Sig-Value ::= SEQUENCE {
|
||
|
r INTEGER,
|
||
|
s INTEGER
|
||
|
}
|
||
|
|
||
|
It's expected that this function will be used as a `sigencode=` parameter
|
||
|
in :func:`ecdsa.keys.SigningKey.sign` method.
|
||
|
|
||
|
:param int r: first parameter of the signature
|
||
|
:param int s: second parameter of the signature
|
||
|
:param int order: the order of the curve over which the signature was
|
||
|
computed
|
||
|
|
||
|
:return: DER encoding of ECDSA signature
|
||
|
:rtype: bytes
|
||
|
"""
|
||
|
return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
|
||
|
|
||
|
|
||
|
# canonical versions of sigencode methods
|
||
|
# these enforce low S values, by negating the value (modulo the order) if
|
||
|
# above order/2 see CECKey::Sign()
|
||
|
# https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp#L214
|
||
|
def sigencode_strings_canonize(r, s, order):
|
||
|
if s > order / 2:
|
||
|
s = order - s
|
||
|
return sigencode_strings(r, s, order)
|
||
|
|
||
|
|
||
|
def sigencode_string_canonize(r, s, order):
|
||
|
if s > order / 2:
|
||
|
s = order - s
|
||
|
return sigencode_string(r, s, order)
|
||
|
|
||
|
|
||
|
def sigencode_der_canonize(r, s, order):
|
||
|
if s > order / 2:
|
||
|
s = order - s
|
||
|
return sigencode_der(r, s, order)
|
||
|
|
||
|
|
||
|
class MalformedSignature(Exception):
|
||
|
"""
|
||
|
Raised by decoding functions when the signature is malformed.
|
||
|
|
||
|
Malformed in this context means that the relevant strings or integers
|
||
|
do not match what a signature over provided curve would create. Either
|
||
|
because the byte strings have incorrect lengths or because the encoded
|
||
|
values are too large.
|
||
|
"""
|
||
|
|
||
|
pass
|
||
|
|
||
|
|
||
|
def sigdecode_string(signature, order):
|
||
|
"""
|
||
|
Decoder for :term:`raw encoding` of ECDSA signatures.
|
||
|
|
||
|
raw encoding is a simple concatenation of the two integers that comprise
|
||
|
the signature, with each encoded using the same amount of bytes depending
|
||
|
on curve size/order.
|
||
|
|
||
|
It's expected that this function will be used as the `sigdecode=`
|
||
|
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
|
||
|
|
||
|
:param signature: encoded signature
|
||
|
:type signature: bytes like object
|
||
|
:param order: order of the curve over which the signature was computed
|
||
|
:type order: int
|
||
|
|
||
|
:raises MalformedSignature: when the encoding of the signature is invalid
|
||
|
|
||
|
:return: tuple with decoded 'r' and 's' values of signature
|
||
|
:rtype: tuple of ints
|
||
|
"""
|
||
|
signature = normalise_bytes(signature)
|
||
|
l = orderlen(order)
|
||
|
if not len(signature) == 2 * l:
|
||
|
raise MalformedSignature(
|
||
|
"Invalid length of signature, expected {0} bytes long, "
|
||
|
"provided string is {1} bytes long".format(2 * l, len(signature))
|
||
|
)
|
||
|
r = string_to_number_fixedlen(signature[:l], order)
|
||
|
s = string_to_number_fixedlen(signature[l:], order)
|
||
|
return r, s
|
||
|
|
||
|
|
||
|
def sigdecode_strings(rs_strings, order):
|
||
|
"""
|
||
|
Decode the signature from two strings.
|
||
|
|
||
|
First string needs to be a big endian encoding of 'r', second needs to
|
||
|
be a big endian encoding of the 's' parameter of an ECDSA signature.
|
||
|
|
||
|
It's expected that this function will be used as the `sigdecode=`
|
||
|
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
|
||
|
|
||
|
:param list rs_strings: list of two bytes-like objects, each encoding one
|
||
|
parameter of signature
|
||
|
:param int order: order of the curve over which the signature was computed
|
||
|
|
||
|
:raises MalformedSignature: when the encoding of the signature is invalid
|
||
|
|
||
|
:return: tuple with decoded 'r' and 's' values of signature
|
||
|
:rtype: tuple of ints
|
||
|
"""
|
||
|
if not len(rs_strings) == 2:
|
||
|
raise MalformedSignature(
|
||
|
"Invalid number of strings provided: {0}, expected 2".format(
|
||
|
len(rs_strings)
|
||
|
)
|
||
|
)
|
||
|
(r_str, s_str) = rs_strings
|
||
|
r_str = normalise_bytes(r_str)
|
||
|
s_str = normalise_bytes(s_str)
|
||
|
l = orderlen(order)
|
||
|
if not len(r_str) == l:
|
||
|
raise MalformedSignature(
|
||
|
"Invalid length of first string ('r' parameter), "
|
||
|
"expected {0} bytes long, provided string is {1} "
|
||
|
"bytes long".format(l, len(r_str))
|
||
|
)
|
||
|
if not len(s_str) == l:
|
||
|
raise MalformedSignature(
|
||
|
"Invalid length of second string ('s' parameter), "
|
||
|
"expected {0} bytes long, provided string is {1} "
|
||
|
"bytes long".format(l, len(s_str))
|
||
|
)
|
||
|
r = string_to_number_fixedlen(r_str, order)
|
||
|
s = string_to_number_fixedlen(s_str, order)
|
||
|
return r, s
|
||
|
|
||
|
|
||
|
def sigdecode_der(sig_der, order):
|
||
|
"""
|
||
|
Decoder for DER format of ECDSA signatures.
|
||
|
|
||
|
DER format of signature is one that uses the :term:`ASN.1` :term:`DER`
|
||
|
rules to encode it as a sequence of two integers::
|
||
|
|
||
|
Ecdsa-Sig-Value ::= SEQUENCE {
|
||
|
r INTEGER,
|
||
|
s INTEGER
|
||
|
}
|
||
|
|
||
|
It's expected that this function will be used as as the `sigdecode=`
|
||
|
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
|
||
|
|
||
|
:param sig_der: encoded signature
|
||
|
:type sig_der: bytes like object
|
||
|
:param order: order of the curve over which the signature was computed
|
||
|
:type order: int
|
||
|
|
||
|
:raises UnexpectedDER: when the encoding of signature is invalid
|
||
|
|
||
|
:return: tuple with decoded 'r' and 's' values of signature
|
||
|
:rtype: tuple of ints
|
||
|
"""
|
||
|
sig_der = normalise_bytes(sig_der)
|
||
|
# return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
|
||
|
rs_strings, empty = der.remove_sequence(sig_der)
|
||
|
if empty != b"":
|
||
|
raise der.UnexpectedDER(
|
||
|
"trailing junk after DER sig: %s" % binascii.hexlify(empty)
|
||
|
)
|
||
|
r, rest = der.remove_integer(rs_strings)
|
||
|
s, empty = der.remove_integer(rest)
|
||
|
if empty != b"":
|
||
|
raise der.UnexpectedDER(
|
||
|
"trailing junk after DER numbers: %s" % binascii.hexlify(empty)
|
||
|
)
|
||
|
return r, s
|