755 lines
21 KiB
Python
755 lines
21 KiB
Python
|
#! /usr/bin/env python
|
||
|
|
||
|
"""
|
||
|
Implementation of Elliptic-Curve Digital Signatures.
|
||
|
|
||
|
Classes and methods for elliptic-curve signatures:
|
||
|
private keys, public keys, signatures,
|
||
|
NIST prime-modulus curves with modulus lengths of
|
||
|
192, 224, 256, 384, and 521 bits.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
# (In real-life applications, you would probably want to
|
||
|
# protect against defects in SystemRandom.)
|
||
|
from random import SystemRandom
|
||
|
randrange = SystemRandom().randrange
|
||
|
|
||
|
# Generate a public/private key pair using the NIST Curve P-192:
|
||
|
|
||
|
g = generator_192
|
||
|
n = g.order()
|
||
|
secret = randrange( 1, n )
|
||
|
pubkey = Public_key( g, g * secret )
|
||
|
privkey = Private_key( pubkey, secret )
|
||
|
|
||
|
# Signing a hash value:
|
||
|
|
||
|
hash = randrange( 1, n )
|
||
|
signature = privkey.sign( hash, randrange( 1, n ) )
|
||
|
|
||
|
# Verifying a signature for a hash value:
|
||
|
|
||
|
if pubkey.verifies( hash, signature ):
|
||
|
print_("Demo verification succeeded.")
|
||
|
else:
|
||
|
print_("*** Demo verification failed.")
|
||
|
|
||
|
# Verification fails if the hash value is modified:
|
||
|
|
||
|
if pubkey.verifies( hash-1, signature ):
|
||
|
print_("**** Demo verification failed to reject tampered hash.")
|
||
|
else:
|
||
|
print_("Demo verification correctly rejected tampered hash.")
|
||
|
|
||
|
Version of 2009.05.16.
|
||
|
|
||
|
Revision history:
|
||
|
2005.12.31 - Initial version.
|
||
|
2008.11.25 - Substantial revisions introducing new classes.
|
||
|
2009.05.16 - Warn against using random.randrange in real applications.
|
||
|
2009.05.17 - Use random.SystemRandom by default.
|
||
|
|
||
|
Written in 2005 by Peter Pearson and placed in the public domain.
|
||
|
"""
|
||
|
|
||
|
from six import int2byte, b
|
||
|
from . import ellipticcurve
|
||
|
from . import numbertheory
|
||
|
from .util import bit_length
|
||
|
from ._compat import remove_whitespace
|
||
|
|
||
|
|
||
|
class RSZeroError(RuntimeError):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class InvalidPointError(RuntimeError):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class Signature(object):
|
||
|
"""ECDSA signature."""
|
||
|
|
||
|
def __init__(self, r, s):
|
||
|
self.r = r
|
||
|
self.s = s
|
||
|
|
||
|
def recover_public_keys(self, hash, generator):
|
||
|
"""Returns two public keys for which the signature is valid
|
||
|
hash is signed hash
|
||
|
generator is the used generator of the signature
|
||
|
"""
|
||
|
curve = generator.curve()
|
||
|
n = generator.order()
|
||
|
r = self.r
|
||
|
s = self.s
|
||
|
e = hash
|
||
|
x = r
|
||
|
|
||
|
# Compute the curve point with x as x-coordinate
|
||
|
alpha = (
|
||
|
pow(x, 3, curve.p()) + (curve.a() * x) + curve.b()
|
||
|
) % curve.p()
|
||
|
beta = numbertheory.square_root_mod_prime(alpha, curve.p())
|
||
|
y = beta if beta % 2 == 0 else curve.p() - beta
|
||
|
|
||
|
# Compute the public key
|
||
|
R1 = ellipticcurve.PointJacobi(curve, x, y, 1, n)
|
||
|
Q1 = numbertheory.inverse_mod(r, n) * (s * R1 + (-e % n) * generator)
|
||
|
Pk1 = Public_key(generator, Q1)
|
||
|
|
||
|
# And the second solution
|
||
|
R2 = ellipticcurve.PointJacobi(curve, x, -y, 1, n)
|
||
|
Q2 = numbertheory.inverse_mod(r, n) * (s * R2 + (-e % n) * generator)
|
||
|
Pk2 = Public_key(generator, Q2)
|
||
|
|
||
|
return [Pk1, Pk2]
|
||
|
|
||
|
|
||
|
class Public_key(object):
|
||
|
"""Public key for ECDSA."""
|
||
|
|
||
|
def __init__(self, generator, point, verify=True):
|
||
|
"""Low level ECDSA public key object.
|
||
|
|
||
|
:param generator: the Point that generates the group (the base point)
|
||
|
:param point: the Point that defines the public key
|
||
|
:param bool verify: if True check if point is valid point on curve
|
||
|
|
||
|
:raises InvalidPointError: if the point parameters are invalid or
|
||
|
point does not lie on the curve
|
||
|
"""
|
||
|
|
||
|
self.curve = generator.curve()
|
||
|
self.generator = generator
|
||
|
self.point = point
|
||
|
n = generator.order()
|
||
|
p = self.curve.p()
|
||
|
if not (0 <= point.x() < p) or not (0 <= point.y() < p):
|
||
|
raise InvalidPointError(
|
||
|
"The public point has x or y out of range."
|
||
|
)
|
||
|
if verify and not self.curve.contains_point(point.x(), point.y()):
|
||
|
raise InvalidPointError("Point does not lie on the curve")
|
||
|
if not n:
|
||
|
raise InvalidPointError("Generator point must have order.")
|
||
|
# for curve parameters with base point with cofactor 1, all points
|
||
|
# that are on the curve are scalar multiples of the base point, so
|
||
|
# verifying that is not necessary. See Section 3.2.2.1 of SEC 1 v2
|
||
|
if (
|
||
|
verify
|
||
|
and self.curve.cofactor() != 1
|
||
|
and not n * point == ellipticcurve.INFINITY
|
||
|
):
|
||
|
raise InvalidPointError("Generator point order is bad.")
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if isinstance(other, Public_key):
|
||
|
"""Return True if the points are identical, False otherwise."""
|
||
|
return self.curve == other.curve and self.point == other.point
|
||
|
return NotImplemented
|
||
|
|
||
|
def verifies(self, hash, signature):
|
||
|
"""Verify that signature is a valid signature of hash.
|
||
|
Return True if the signature is valid.
|
||
|
"""
|
||
|
|
||
|
# From X9.62 J.3.1.
|
||
|
|
||
|
G = self.generator
|
||
|
n = G.order()
|
||
|
r = signature.r
|
||
|
s = signature.s
|
||
|
if r < 1 or r > n - 1:
|
||
|
return False
|
||
|
if s < 1 or s > n - 1:
|
||
|
return False
|
||
|
c = numbertheory.inverse_mod(s, n)
|
||
|
u1 = (hash * c) % n
|
||
|
u2 = (r * c) % n
|
||
|
if hasattr(G, "mul_add"):
|
||
|
xy = G.mul_add(u1, self.point, u2)
|
||
|
else:
|
||
|
xy = u1 * G + u2 * self.point
|
||
|
v = xy.x() % n
|
||
|
return v == r
|
||
|
|
||
|
|
||
|
class Private_key(object):
|
||
|
"""Private key for ECDSA."""
|
||
|
|
||
|
def __init__(self, public_key, secret_multiplier):
|
||
|
"""public_key is of class Public_key;
|
||
|
secret_multiplier is a large integer.
|
||
|
"""
|
||
|
|
||
|
self.public_key = public_key
|
||
|
self.secret_multiplier = secret_multiplier
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if isinstance(other, Private_key):
|
||
|
"""Return True if the points are identical, False otherwise."""
|
||
|
return (
|
||
|
self.public_key == other.public_key
|
||
|
and self.secret_multiplier == other.secret_multiplier
|
||
|
)
|
||
|
return NotImplemented
|
||
|
|
||
|
def sign(self, hash, random_k):
|
||
|
"""Return a signature for the provided hash, using the provided
|
||
|
random nonce. It is absolutely vital that random_k be an unpredictable
|
||
|
number in the range [1, self.public_key.point.order()-1]. If
|
||
|
an attacker can guess random_k, he can compute our private key from a
|
||
|
single signature. Also, if an attacker knows a few high-order
|
||
|
bits (or a few low-order bits) of random_k, he can compute our private
|
||
|
key from many signatures. The generation of nonces with adequate
|
||
|
cryptographic strength is very difficult and far beyond the scope
|
||
|
of this comment.
|
||
|
|
||
|
May raise RuntimeError, in which case retrying with a new
|
||
|
random value k is in order.
|
||
|
"""
|
||
|
|
||
|
G = self.public_key.generator
|
||
|
n = G.order()
|
||
|
k = random_k % n
|
||
|
# Fix the bit-length of the random nonce,
|
||
|
# so that it doesn't leak via timing.
|
||
|
# This does not change that ks = k mod n
|
||
|
ks = k + n
|
||
|
kt = ks + n
|
||
|
if bit_length(ks) == bit_length(n):
|
||
|
p1 = kt * G
|
||
|
else:
|
||
|
p1 = ks * G
|
||
|
r = p1.x() % n
|
||
|
if r == 0:
|
||
|
raise RSZeroError("amazingly unlucky random number r")
|
||
|
s = (
|
||
|
numbertheory.inverse_mod(k, n)
|
||
|
* (hash + (self.secret_multiplier * r) % n)
|
||
|
) % n
|
||
|
if s == 0:
|
||
|
raise RSZeroError("amazingly unlucky random number s")
|
||
|
return Signature(r, s)
|
||
|
|
||
|
|
||
|
def int_to_string(x):
|
||
|
"""Convert integer x into a string of bytes, as per X9.62."""
|
||
|
assert x >= 0
|
||
|
if x == 0:
|
||
|
return b("\0")
|
||
|
result = []
|
||
|
while x:
|
||
|
ordinal = x & 0xFF
|
||
|
result.append(int2byte(ordinal))
|
||
|
x >>= 8
|
||
|
|
||
|
result.reverse()
|
||
|
return b("").join(result)
|
||
|
|
||
|
|
||
|
def string_to_int(s):
|
||
|
"""Convert a string of bytes into an integer, as per X9.62."""
|
||
|
result = 0
|
||
|
for c in s:
|
||
|
if not isinstance(c, int):
|
||
|
c = ord(c)
|
||
|
result = 256 * result + c
|
||
|
return result
|
||
|
|
||
|
|
||
|
def digest_integer(m):
|
||
|
"""Convert an integer into a string of bytes, compute
|
||
|
its SHA-1 hash, and convert the result to an integer."""
|
||
|
#
|
||
|
# I don't expect this function to be used much. I wrote
|
||
|
# it in order to be able to duplicate the examples
|
||
|
# in ECDSAVS.
|
||
|
#
|
||
|
from hashlib import sha1
|
||
|
|
||
|
return string_to_int(sha1(int_to_string(m)).digest())
|
||
|
|
||
|
|
||
|
def point_is_valid(generator, x, y):
|
||
|
"""Is (x,y) a valid public key based on the specified generator?"""
|
||
|
|
||
|
# These are the tests specified in X9.62.
|
||
|
|
||
|
n = generator.order()
|
||
|
curve = generator.curve()
|
||
|
p = curve.p()
|
||
|
if not (0 <= x < p) or not (0 <= y < p):
|
||
|
return False
|
||
|
if not curve.contains_point(x, y):
|
||
|
return False
|
||
|
if (
|
||
|
curve.cofactor() != 1
|
||
|
and not n * ellipticcurve.PointJacobi(curve, x, y, 1)
|
||
|
== ellipticcurve.INFINITY
|
||
|
):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
# NIST Curve P-192:
|
||
|
_p = 6277101735386680763835789423207666416083908700390324961279
|
||
|
_r = 6277101735386680763835789423176059013767194773182842284081
|
||
|
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
|
||
|
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_192 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||
|
generator_192 = ellipticcurve.PointJacobi(
|
||
|
curve_192, _Gx, _Gy, 1, _r, generator=True
|
||
|
)
|
||
|
|
||
|
|
||
|
# NIST Curve P-224:
|
||
|
_p = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
2695994666715063979466701508701963067355791626002630814351
|
||
|
0066298881"""
|
||
|
)
|
||
|
)
|
||
|
_r = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
2695994666715063979466701508701962594045780771442439172168
|
||
|
2722368061"""
|
||
|
)
|
||
|
)
|
||
|
# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
|
||
|
# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943
|
||
|
2355FFB4"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6
|
||
|
115C1D21"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199
|
||
|
85007E34"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_224 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||
|
generator_224 = ellipticcurve.PointJacobi(
|
||
|
curve_224, _Gx, _Gy, 1, _r, generator=True
|
||
|
)
|
||
|
|
||
|
# NIST Curve P-256:
|
||
|
_p = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
1157920892103562487626974469494075735300861434152903141955
|
||
|
33631308867097853951"""
|
||
|
)
|
||
|
)
|
||
|
_r = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
115792089210356248762697446949407573529996955224135760342
|
||
|
422259061068512044369"""
|
||
|
)
|
||
|
)
|
||
|
# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
|
||
|
# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6
|
||
|
3BCE3C3E 27D2604B"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0
|
||
|
F4A13945 D898C296"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE
|
||
|
CBB64068 37BF51F5"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_256 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||
|
generator_256 = ellipticcurve.PointJacobi(
|
||
|
curve_256, _Gx, _Gy, 1, _r, generator=True
|
||
|
)
|
||
|
|
||
|
# NIST Curve P-384:
|
||
|
_p = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
3940200619639447921227904010014361380507973927046544666794
|
||
|
8293404245721771496870329047266088258938001861606973112319"""
|
||
|
)
|
||
|
)
|
||
|
_r = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
3940200619639447921227904010014361380507973927046544666794
|
||
|
6905279627659399113263569398956308152294913554433653942643"""
|
||
|
)
|
||
|
)
|
||
|
# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
|
||
|
# c = int(remove_whitespace(
|
||
|
# """
|
||
|
# 79d1e655 f868f02f ff48dcde e14151dd b80643c1 406d0ca1
|
||
|
# 0dfe6fc5 2009540a 495e8042 ea5f744f 6e184667 cc722483"""
|
||
|
# ), 16)
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112
|
||
|
0314088F 5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98
|
||
|
59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
3617DE4A 96262C6F 5D9E98BF 9292DC29 F8F41DBD 289A147C
|
||
|
E9DA3113 B5F0B8C0 0A60B1CE 1D7E819D 7A431D7C 90EA0E5F"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_384 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||
|
generator_384 = ellipticcurve.PointJacobi(
|
||
|
curve_384, _Gx, _Gy, 1, _r, generator=True
|
||
|
)
|
||
|
|
||
|
# NIST Curve P-521:
|
||
|
_p = int(
|
||
|
"686479766013060971498190079908139321726943530014330540939"
|
||
|
"446345918554318339765605212255964066145455497729631139148"
|
||
|
"0858037121987999716643812574028291115057151"
|
||
|
)
|
||
|
_r = int(
|
||
|
"686479766013060971498190079908139321726943530014330540939"
|
||
|
"446345918554318339765539424505774633321719753296399637136"
|
||
|
"3321113864768612440380340372808892707005449"
|
||
|
)
|
||
|
# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
|
||
|
# c = int(remove_whitespace(
|
||
|
# """
|
||
|
# 0b4 8bfa5f42 0a349495 39d2bdfc 264eeeeb 077688e4
|
||
|
# 4fbf0ad8 f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9
|
||
|
# ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637"""
|
||
|
# ), 16)
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B
|
||
|
99B315F3 B8B48991 8EF109E1 56193951 EC7E937B 1652C0BD
|
||
|
3BB1BF07 3573DF88 3D2C34F1 EF451FD4 6B503F00"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139
|
||
|
053FB521 F828AF60 6B4D3DBA A14B5E77 EFE75928 FE1DC127
|
||
|
A2FFA8DE 3348B3C1 856A429B F97E7E31 C2E5BD66"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449
|
||
|
579B4468 17AFBD17 273E662C 97EE7299 5EF42640 C550B901
|
||
|
3FAD0761 353C7086 A272C240 88BE9476 9FD16650"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_521 = ellipticcurve.CurveFp(_p, -3, _b, 1)
|
||
|
generator_521 = ellipticcurve.PointJacobi(
|
||
|
curve_521, _Gx, _Gy, 1, _r, generator=True
|
||
|
)
|
||
|
|
||
|
# Certicom secp256-k1
|
||
|
_a = 0x0000000000000000000000000000000000000000000000000000000000000000
|
||
|
_b = 0x0000000000000000000000000000000000000000000000000000000000000007
|
||
|
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
||
|
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
|
||
|
_Gy = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
|
||
|
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
||
|
|
||
|
curve_secp256k1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_secp256k1 = ellipticcurve.PointJacobi(
|
||
|
curve_secp256k1, _Gx, _Gy, 1, _r, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-160-r1
|
||
|
_a = 0x340E7BE2A280EB74E2BE61BADA745D97E8F7C300
|
||
|
_b = 0x1E589A8595423412134FAA2DBDEC95C8D8675E58
|
||
|
_p = 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F
|
||
|
_Gx = 0xBED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3
|
||
|
_Gy = 0x1667CB477A1A8EC338F94741669C976316DA6321
|
||
|
_q = 0xE95E4A5F737059DC60DF5991D45029409E60FC09
|
||
|
|
||
|
curve_brainpoolp160r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp160r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp160r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-192-r1
|
||
|
_a = 0x6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28EF
|
||
|
_b = 0x469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF25C9
|
||
|
_p = 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297
|
||
|
_Gx = 0xC0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375FD6
|
||
|
_Gy = 0x14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B8F
|
||
|
_q = 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1
|
||
|
|
||
|
curve_brainpoolp192r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp192r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp192r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-224-r1
|
||
|
_a = 0x68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
|
||
|
_b = 0x2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B
|
||
|
_p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
|
||
|
_Gx = 0x0D9029AD2C7E5CF4340823B2A87DC68C9E4CE3174C1E6EFDEE12C07D
|
||
|
_Gy = 0x58AA56F772C0726F24C6B89E4ECDAC24354B9E99CAA3F6D3761402CD
|
||
|
_q = 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F
|
||
|
|
||
|
curve_brainpoolp224r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp224r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp224r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-256-r1
|
||
|
_a = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9
|
||
|
_b = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6
|
||
|
_p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377
|
||
|
_Gx = 0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262
|
||
|
_Gy = 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997
|
||
|
_q = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7
|
||
|
|
||
|
curve_brainpoolp256r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp256r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp256r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-320-r1
|
||
|
_a = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
3EE30B568FBAB0F883CCEBD46D3F3BB8A2A73513F5EB79DA66190EB085FFA9
|
||
|
F492F375A97D860EB4"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539
|
||
|
816F5EB4AC8FB1F1A6"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_p = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
D35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC
|
||
|
28FCD412B1F1B32E27"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
43BD7E9AFB53D8B85289BCC48EE5BFE6F20137D10A087EB6E7871E2A10A599
|
||
|
C710AF8D0D39E20611"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9C77877AAAC6A
|
||
|
C7D35245D1692E8EE1"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_q = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
D35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658
|
||
|
E98691555B44C59311"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_brainpoolp320r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp320r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp320r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-384-r1
|
||
|
_a = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9
|
||
|
0F8AA5814A503AD4EB04A8C7DD22CE2826"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62
|
||
|
D57CB4390295DBC9943AB78696FA504C11"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_p = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711
|
||
|
23ACD3A729901D1A71874700133107EC53"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10
|
||
|
E8E826E03436D646AAEF87B2E247D4AF1E"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF991292
|
||
|
80E4646217791811142820341263C5315"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_q = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425
|
||
|
A7CF3AB6AF6B7FC3103B883202E9046565"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_brainpoolp384r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp384r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp384r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|
||
|
|
||
|
# Brainpool P-512-r1
|
||
|
_a = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863
|
||
|
BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_b = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117
|
||
|
A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_p = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308
|
||
|
717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gx = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009
|
||
|
8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_Gy = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81
|
||
|
11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
_q = int(
|
||
|
remove_whitespace(
|
||
|
"""
|
||
|
AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308
|
||
|
70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"""
|
||
|
),
|
||
|
16,
|
||
|
)
|
||
|
|
||
|
curve_brainpoolp512r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
|
||
|
generator_brainpoolp512r1 = ellipticcurve.PointJacobi(
|
||
|
curve_brainpoolp512r1, _Gx, _Gy, 1, _q, generator=True
|
||
|
)
|