wifi-tally_Oostendam/nodemcu-firmware/app/platform/platform.c

1168 lines
33 KiB
C
Raw Permalink Normal View History

2021-09-27 19:52:27 +00:00
// Platform-dependent functions and includes
#include "platform.h"
#include "common.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include "gpio.h"
#include "user_interface.h"
#include "driver/gpio16.h"
#include "driver/i2c_master.h"
#include "driver/spi.h"
#include "driver/uart.h"
#include "driver/sigma_delta.h"
#define INTERRUPT_TYPE_IS_LEVEL(x) ((x) >= GPIO_PIN_INTR_LOLEVEL)
#ifdef GPIO_INTERRUPT_ENABLE
static platform_task_handle_t gpio_task_handle;
static int task_init_handler(void);
#ifdef GPIO_INTERRUPT_HOOK_ENABLE
struct gpio_hook_entry {
platform_hook_function func;
uint32_t bits;
};
struct gpio_hook {
uint32_t all_bits;
uint32_t count;
struct gpio_hook_entry entry[1];
};
static struct gpio_hook *platform_gpio_hook;
#endif
#endif
static const int uart_bitrates[] = {
BIT_RATE_300,
BIT_RATE_600,
BIT_RATE_1200,
BIT_RATE_2400,
BIT_RATE_4800,
BIT_RATE_9600,
BIT_RATE_19200,
BIT_RATE_31250,
BIT_RATE_38400,
BIT_RATE_57600,
BIT_RATE_74880,
BIT_RATE_115200,
BIT_RATE_230400,
BIT_RATE_256000,
BIT_RATE_460800,
BIT_RATE_921600,
BIT_RATE_1843200,
BIT_RATE_3686400
};
int platform_init ()
{
// Setup the various forward and reverse mappings for the pins
get_pin_map();
(void) task_init_handler();
cmn_platform_init();
// All done
return PLATFORM_OK;
}
// ****************************************************************************
// KEY_LED functions
uint8_t platform_key_led( uint8_t level){
uint8_t temp;
gpio16_output_set(1); // set to high first, for reading key low level
gpio16_input_conf();
temp = gpio16_input_get();
gpio16_output_conf();
gpio16_output_set(level);
return temp;
}
// ****************************************************************************
// GPIO functions
/*
* Set GPIO mode to output. Optionally in RAM helper because interrupts are dsabled
*/
static void NO_INTR_CODE set_gpio_no_interrupt(uint8_t pin, uint8_t push_pull) {
unsigned pnum = pin_num[pin];
ETS_GPIO_INTR_DISABLE();
#ifdef GPIO_INTERRUPT_ENABLE
pin_int_type[pin] = GPIO_PIN_INTR_DISABLE;
#endif
PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]);
//disable interrupt
gpio_pin_intr_state_set(GPIO_ID_PIN(pnum), GPIO_PIN_INTR_DISABLE);
//clear interrupt status
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pnum));
// configure push-pull vs open-drain
if (push_pull) {
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)),
GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) &
(~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain;
} else {
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)),
GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) |
GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE)); //enable open drain;
}
ETS_GPIO_INTR_ENABLE();
}
/*
* Set GPIO mode to interrupt. Optionally RAM helper because interrupts are dsabled
*/
#ifdef GPIO_INTERRUPT_ENABLE
static void NO_INTR_CODE set_gpio_interrupt(uint8_t pin) {
ETS_GPIO_INTR_DISABLE();
PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]);
GPIO_DIS_OUTPUT(pin_num[pin]);
gpio_register_set(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])),
GPIO_PIN_INT_TYPE_SET(GPIO_PIN_INTR_DISABLE)
| GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_DISABLE)
| GPIO_PIN_SOURCE_SET(GPIO_AS_PIN_SOURCE));
ETS_GPIO_INTR_ENABLE();
}
#endif
int platform_gpio_mode( unsigned pin, unsigned mode, unsigned pull )
{
NODE_DBG("Function platform_gpio_mode() is called. pin_mux:%d, func:%d\n", pin_mux[pin], pin_func[pin]);
if (pin >= NUM_GPIO)
return -1;
if(pin == 0){
if(mode==PLATFORM_GPIO_INPUT)
gpio16_input_conf();
else
gpio16_output_conf();
return 1;
}
#ifdef LUA_USE_MODULES_PWM
platform_pwm_close(pin); // closed from pwm module, if it is used in pwm
#endif
if (pull == PLATFORM_GPIO_PULLUP) {
PIN_PULLUP_EN(pin_mux[pin]);
} else {
PIN_PULLUP_DIS(pin_mux[pin]);
}
switch(mode){
case PLATFORM_GPIO_INPUT:
GPIO_DIS_OUTPUT(pin_num[pin]);
set_gpio_no_interrupt(pin, TRUE);
break;
case PLATFORM_GPIO_OUTPUT:
set_gpio_no_interrupt(pin, TRUE);
GPIO_REG_WRITE(GPIO_ENABLE_W1TS_ADDRESS, BIT(pin_num[pin]));
break;
case PLATFORM_GPIO_OPENDRAIN:
set_gpio_no_interrupt(pin, FALSE);
GPIO_REG_WRITE(GPIO_ENABLE_W1TS_ADDRESS, BIT(pin_num[pin]));
break;
#ifdef GPIO_INTERRUPT_ENABLE
case PLATFORM_GPIO_INT:
set_gpio_interrupt(pin);
break;
#endif
default:
break;
}
return 1;
}
int platform_gpio_write( unsigned pin, unsigned level )
{
// NODE_DBG("Function platform_gpio_write() is called. pin:%d, level:%d\n",GPIO_ID_PIN(pin_num[pin]),level);
if (pin >= NUM_GPIO)
return -1;
if(pin == 0){
gpio16_output_conf();
gpio16_output_set(level);
return 1;
}
GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[pin]), level);
}
int platform_gpio_read( unsigned pin )
{
// NODE_DBG("Function platform_gpio_read() is called. pin:%d\n",GPIO_ID_PIN(pin_num[pin]));
if (pin >= NUM_GPIO)
return -1;
if(pin == 0){
// gpio16_input_conf();
return 0x1 & gpio16_input_get();
}
// GPIO_DIS_OUTPUT(pin_num[pin]);
return 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(pin_num[pin]));
}
#ifdef GPIO_INTERRUPT_ENABLE
static void ICACHE_RAM_ATTR platform_gpio_intr_dispatcher (void *dummy){
uint32_t j=0;
uint32_t gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
uint32_t now = system_get_time();
(void)(dummy);
#ifdef GPIO_INTERRUPT_HOOK_ENABLE
if (gpio_status & platform_gpio_hook->all_bits) {
for (j = 0; j < platform_gpio_hook->count; j++) {
if (gpio_status & platform_gpio_hook->entry[j].bits)
gpio_status = (platform_gpio_hook->entry[j].func)(gpio_status);
}
}
#endif
/*
* gpio_status is a bit map where bit 0 is set if unmapped gpio pin 0 (pin3) has
* triggered the ISR. bit 1 if unmapped gpio pin 1 (pin10=U0TXD), etc. Since this
* is the ISR, it makes sense to optimize this by doing a fast scan of the status
* and reverse mapping any set bits.
*/
for (j = 0; gpio_status>0; j++, gpio_status >>= 1) {
if (gpio_status&1) {
int i = pin_num_inv[j];
if (pin_int_type[i]) {
uint16_t diff = pin_counter[i].seen ^ pin_counter[i].reported;
pin_counter[i].seen = 0x7fff & (pin_counter[i].seen + 1);
if (INTERRUPT_TYPE_IS_LEVEL(pin_int_type[i])) {
//disable interrupt
gpio_pin_intr_state_set(GPIO_ID_PIN(j), GPIO_PIN_INTR_DISABLE);
}
//clear interrupt status
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(j));
if (diff == 0 || diff & 0x8000) {
uint32_t level = 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(j));
if (!platform_post_high (gpio_task_handle, (now << 8) + (i<<1) + level)) {
// If we fail to post, then try on the next interrupt
pin_counter[i].seen |= 0x8000;
}
// We re-enable the interrupt when we execute the callback (if level)
}
} else {
// this is an unexpected interrupt so shut it off for now
gpio_pin_intr_state_set(GPIO_ID_PIN(j), GPIO_PIN_INTR_DISABLE);
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(j));
}
}
}
}
void platform_gpio_init( platform_task_handle_t gpio_task )
{
gpio_task_handle = gpio_task;
// No error handling but this is called at startup when there is a lot of free RAM
platform_gpio_hook = calloc (1, sizeof(*platform_gpio_hook) - sizeof(struct gpio_hook_entry));
ETS_GPIO_INTR_ATTACH(platform_gpio_intr_dispatcher, NULL);
}
#ifdef GPIO_INTERRUPT_HOOK_ENABLE
/*
* Register an ISR hook to be called from the GPIO ISR for a given GPIO bitmask.
* This routine is only called a few times so has been optimised for size and
* the unregister is a special case when the bits are 0.
*
* Each hook function can only be registered once. If it is re-registered
* then the hooked bits are just updated to the new value.
*/
int platform_gpio_register_intr_hook(uint32_t bits, platform_hook_function hook)
{
struct gpio_hook *oh = platform_gpio_hook;
int i, j, cur = -1;
if (!hook) // Cannot register or unregister null hook
return 0;
// Is the hook already registered?
for (i=0; i<oh->count; i++) {
if (hook == oh->entry[i].func) {
cur = i;
break;
}
}
// return error status if there is a bits clash
if (oh->all_bits & ~(cur < 0 ? 0 : oh->entry[cur].bits) & bits)
return 0;
// Allocate replacement hook block and return 0 on alloc failure
int count = oh->count + (cur < 0 ? 1 : (bits == 0 ? -1 : 0));
struct gpio_hook *nh = malloc (sizeof *oh + (count -1)*sizeof(struct gpio_hook_entry));
if (!oh)
return 0;
nh->all_bits = 0;
nh->count = count;
for (i=0, j=0; i<oh->count; i++) {
if (i == cur && !bits)
continue; /* unregister entry is a no-op */
nh->entry[j] = oh->entry[i]; /* copy existing entry */
if (i == cur)
nh->entry[j].bits = bits; /* update bits if this is a replacement */
nh->all_bits |= nh->entry[j++].bits;
}
if (cur < 0) { /* append new hook entry */
nh->entry[j].func = hook;
nh->entry[j].bits = bits;
nh->all_bits |= bits;
}
ETS_GPIO_INTR_DISABLE();
platform_gpio_hook = nh;
ETS_GPIO_INTR_ENABLE();
free(oh);
return 1;
}
#endif // GPIO_INTERRUPT_HOOK_ENABLE
/*
* Initialise GPIO interrupt mode. Optionally in RAM because interrupts are disabled
*/
void NO_INTR_CODE platform_gpio_intr_init( unsigned pin, GPIO_INT_TYPE type )
{
if (platform_gpio_exists(pin)) {
ETS_GPIO_INTR_DISABLE();
//clear interrupt status
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pin_num[pin]));
pin_int_type[pin] = type;
//enable interrupt
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[pin]), type);
ETS_GPIO_INTR_ENABLE();
}
}
#endif
// ****************************************************************************
// UART
// TODO: Support timeouts.
// UartDev is defined and initialized in rom code.
extern UartDevice UartDev;
uint32_t platform_uart_setup( unsigned id, uint32_t baud, int databits, int parity, int stopbits )
{
switch( baud )
{
case BIT_RATE_300:
case BIT_RATE_600:
case BIT_RATE_1200:
case BIT_RATE_2400:
case BIT_RATE_4800:
case BIT_RATE_9600:
case BIT_RATE_19200:
case BIT_RATE_31250:
case BIT_RATE_38400:
case BIT_RATE_57600:
case BIT_RATE_74880:
case BIT_RATE_115200:
case BIT_RATE_230400:
case BIT_RATE_256000:
case BIT_RATE_460800:
case BIT_RATE_921600:
case BIT_RATE_1843200:
case BIT_RATE_3686400:
UartDev.baut_rate = baud;
break;
default:
UartDev.baut_rate = BIT_RATE_9600;
break;
}
switch( databits )
{
case 5:
UartDev.data_bits = FIVE_BITS;
break;
case 6:
UartDev.data_bits = SIX_BITS;
break;
case 7:
UartDev.data_bits = SEVEN_BITS;
break;
case 8:
UartDev.data_bits = EIGHT_BITS;
break;
default:
UartDev.data_bits = EIGHT_BITS;
break;
}
switch (stopbits)
{
case PLATFORM_UART_STOPBITS_1_5:
UartDev.stop_bits = ONE_HALF_STOP_BIT;
break;
case PLATFORM_UART_STOPBITS_2:
UartDev.stop_bits = TWO_STOP_BIT;
break;
default:
UartDev.stop_bits = ONE_STOP_BIT;
break;
}
switch (parity)
{
case PLATFORM_UART_PARITY_EVEN:
UartDev.parity = EVEN_BITS;
UartDev.exist_parity = STICK_PARITY_EN;
break;
case PLATFORM_UART_PARITY_ODD:
UartDev.parity = ODD_BITS;
UartDev.exist_parity = STICK_PARITY_EN;
break;
default:
UartDev.parity = NONE_BITS;
UartDev.exist_parity = STICK_PARITY_DIS;
break;
}
uart_setup(id);
return baud;
}
void platform_uart_get_config(unsigned id, uint32_t *baudp, uint32_t *databitsp, uint32_t *parityp, uint32_t *stopbitsp) {
UartConfig config = uart_get_config(id);
int i;
int offset = config.baut_rate;
for (i = 0; i < sizeof(uart_bitrates) / sizeof(uart_bitrates[0]); i++) {
int diff = config.baut_rate - uart_bitrates[i];
if (diff < 0) {
diff = -diff;
}
if (diff < offset) {
offset = diff;
*baudp = uart_bitrates[i];
}
}
switch( config.data_bits )
{
case FIVE_BITS:
*databitsp = 5;
break;
case SIX_BITS:
*databitsp = 6;
break;
case SEVEN_BITS:
*databitsp = 7;
break;
case EIGHT_BITS:
default:
*databitsp = 8;
break;
}
switch (config.stop_bits)
{
case ONE_HALF_STOP_BIT:
*stopbitsp = PLATFORM_UART_STOPBITS_1_5;
break;
case TWO_STOP_BIT:
*stopbitsp = PLATFORM_UART_STOPBITS_2;
break;
default:
*stopbitsp = PLATFORM_UART_STOPBITS_1;
break;
}
if (config.exist_parity == STICK_PARITY_DIS) {
*parityp = PLATFORM_UART_PARITY_NONE;
} else if (config.parity == EVEN_BITS) {
*parityp = PLATFORM_UART_PARITY_EVEN;
} else {
*parityp = PLATFORM_UART_PARITY_ODD;
}
}
// if set=1, then alternate serial output pins are used. (15=rx, 13=tx)
void platform_uart_alt( int set )
{
uart0_alt( set );
return;
}
// Send: version with and without mux
void platform_uart_send( unsigned id, u8 data )
{
uart_tx_one_char(id, data);
}
// ****************************************************************************
// PWMs
static uint16_t pwms_duty[NUM_PWM] = {0};
void platform_pwm_init()
{
int i;
for(i=0;i<NUM_PWM;i++){
pwms_duty[i] = DUTY(0);
}
pwm_init(500, NULL);
// NODE_DBG("Function pwms_init() is called.\n");
}
// Return the PWM clock
// NOTE: Can't find a function to query for the period set for the timer,
// therefore using the struct.
// This may require adjustment if driver libraries are updated.
uint32_t platform_pwm_get_clock( unsigned pin )
{
// NODE_DBG("Function platform_pwm_get_clock() is called.\n");
if( pin >= NUM_PWM)
return 0;
if(!pwm_exist(pin))
return 0;
return (uint32_t)pwm_get_freq(pin);
}
// Set the PWM clock
uint32_t platform_pwm_set_clock( unsigned pin, uint32_t clock )
{
// NODE_DBG("Function platform_pwm_set_clock() is called.\n");
if( pin >= NUM_PWM)
return 0;
if(!pwm_exist(pin))
return 0;
pwm_set_freq((uint16_t)clock, pin);
pwm_start();
return (uint32_t)pwm_get_freq( pin );
}
uint32_t platform_pwm_get_duty( unsigned pin )
{
// NODE_DBG("Function platform_pwm_get_duty() is called.\n");
if( pin < NUM_PWM){
if(!pwm_exist(pin))
return 0;
// return NORMAL_DUTY(pwm_get_duty(pin));
return pwms_duty[pin];
}
return 0;
}
// Set the PWM duty
uint32_t platform_pwm_set_duty( unsigned pin, uint32_t duty )
{
// NODE_DBG("Function platform_pwm_set_duty() is called.\n");
if ( pin < NUM_PWM)
{
if(!pwm_exist(pin))
return 0;
pwm_set_duty(DUTY(duty), pin);
} else {
return 0;
}
pwm_start();
pwms_duty[pin] = NORMAL_DUTY(pwm_get_duty(pin));
return pwms_duty[pin];
}
uint32_t platform_pwm_setup( unsigned pin, uint32_t frequency, unsigned duty )
{
uint32_t clock;
if ( pin < NUM_PWM)
{
platform_gpio_mode(pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT); // disable gpio interrupt first
if(!pwm_add(pin))
return 0;
// pwm_set_duty(DUTY(duty), pin);
pwm_set_duty(0, pin);
pwms_duty[pin] = duty;
pwm_set_freq((uint16_t)frequency, pin);
} else {
return 0;
}
clock = platform_pwm_get_clock( pin );
if (!pwm_start()) {
return 0;
}
return clock;
}
void platform_pwm_close( unsigned pin )
{
// NODE_DBG("Function platform_pwm_stop() is called.\n");
if ( pin < NUM_PWM)
{
pwm_delete(pin);
pwm_start();
}
}
bool platform_pwm_start( unsigned pin )
{
// NODE_DBG("Function platform_pwm_start() is called.\n");
if ( pin < NUM_PWM)
{
if(!pwm_exist(pin))
return FALSE;
pwm_set_duty(DUTY(pwms_duty[pin]), pin);
return pwm_start();
}
return FALSE;
}
void platform_pwm_stop( unsigned pin )
{
// NODE_DBG("Function platform_pwm_stop() is called.\n");
if ( pin < NUM_PWM)
{
if(!pwm_exist(pin))
return;
pwm_set_duty(0, pin);
pwm_start();
}
}
// *****************************************************************************
// Sigma-Delta platform interface
uint8_t platform_sigma_delta_setup( uint8_t pin )
{
if (pin < 1 || pin > NUM_GPIO)
return 0;
sigma_delta_setup();
// set GPIO output mode for this pin
platform_gpio_mode( pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT );
platform_gpio_write( pin, PLATFORM_GPIO_LOW );
// enable sigma-delta on this pin
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])),
(GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) |
GPIO_PIN_SOURCE_SET( SIGMA_AS_PIN_SOURCE ));
return 1;
}
uint8_t platform_sigma_delta_close( uint8_t pin )
{
if (pin < 1 || pin > NUM_GPIO)
return 0;
sigma_delta_stop();
// set GPIO input mode for this pin
platform_gpio_mode( pin, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP );
// CONNECT GPIO TO PIN PAD
GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])),
(GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) |
GPIO_PIN_SOURCE_SET( GPIO_AS_PIN_SOURCE ));
return 1;
}
void platform_sigma_delta_set_pwmduty( uint8_t duty )
{
uint8_t target = 0, prescale = 0;
target = duty > 128 ? 256 - duty : duty;
prescale = target == 0 ? 0 : target-1;
//freq = 80000 (khz) /256 /duty_target * (prescale+1)
sigma_delta_set_prescale_target( prescale, duty );
}
void platform_sigma_delta_set_prescale( uint8_t prescale )
{
sigma_delta_set_prescale_target( prescale, -1 );
}
void ICACHE_RAM_ATTR platform_sigma_delta_set_target( uint8_t target )
{
sigma_delta_set_prescale_target( -1, target );
}
// *****************************************************************************
// I2C platform interface
uint32_t platform_i2c_setup( unsigned id, uint8_t sda, uint8_t scl, uint32_t speed ){
if (sda >= NUM_GPIO || scl >= NUM_GPIO)
return 0;
// platform_pwm_close(sda);
// platform_pwm_close(scl);
// disable gpio interrupt first
platform_gpio_mode(sda, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // inside this func call platform_pwm_close
platform_gpio_mode(scl, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // disable gpio interrupt first
return i2c_master_setup(id, sda, scl, speed);
}
bool platform_i2c_configured( unsigned id ){
return i2c_master_configured(id);
}
void platform_i2c_send_start( unsigned id ){
i2c_master_start(id);
}
void platform_i2c_send_stop( unsigned id ){
i2c_master_stop(id);
}
int platform_i2c_send_address( unsigned id, uint16_t address, int direction ){
// Convert enum codes to R/w bit value.
// If TX == 0 and RX == 1, this test will be removed by the compiler
if ( ! ( PLATFORM_I2C_DIRECTION_TRANSMITTER == 0 &&
PLATFORM_I2C_DIRECTION_RECEIVER == 1 ) ) {
direction = ( direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ) ? 0 : 1;
}
return i2c_master_writeByte(id,
(uint8_t) ((address << 1) + (direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ? 0 : 1))
);
}
int platform_i2c_send_byte(unsigned id, uint8_t data ){
return i2c_master_writeByte(id, data);
}
int platform_i2c_recv_byte( unsigned id, int ack ){
return i2c_master_readByte(id, ack);
}
// *****************************************************************************
// SPI platform interface
uint32_t platform_spi_setup( uint8_t id, int mode, unsigned cpol, unsigned cpha, uint32_t clock_div )
{
spi_master_init( id, cpol, cpha, clock_div );
// all platform functions assume LSB order for MOSI & MISO buffer
spi_mast_byte_order( id, SPI_ORDER_LSB );
return 1;
}
int platform_spi_send( uint8_t id, uint8_t bitlen, spi_data_type data )
{
if (bitlen > 32)
return PLATFORM_ERR;
spi_mast_transaction( id, 0, 0, bitlen, data, 0, 0, 0 );
return PLATFORM_OK;
}
spi_data_type platform_spi_send_recv( uint8_t id, uint8_t bitlen, spi_data_type data )
{
if (bitlen > 32)
return 0;
spi_mast_set_mosi( id, 0, bitlen, data );
spi_mast_transaction( id, 0, 0, 0, 0, bitlen, 0, -1 );
return spi_mast_get_miso( id, 0, bitlen );
}
int platform_spi_blkwrite( uint8_t id, size_t len, const uint8_t *data )
{
while (len > 0) {
size_t chunk_len = len > 64 ? 64 : len;
spi_mast_blkset( id, chunk_len * 8, data );
spi_mast_transaction( id, 0, 0, 0, 0, chunk_len * 8, 0, 0 );
data = &(data[chunk_len]);
len -= chunk_len;
}
return PLATFORM_OK;
}
int platform_spi_blkread( uint8_t id, size_t len, uint8_t *data )
{
uint8_t mosi_idle[64];
os_memset( (void *)mosi_idle, 0xff, len > 64 ? 64 : len );
while (len > 0 ) {
size_t chunk_len = len > 64 ? 64 : len;
spi_mast_blkset( id, chunk_len * 8, mosi_idle );
spi_mast_transaction( id, 0, 0, 0, 0, chunk_len * 8, 0, -1 );
spi_mast_blkget( id, chunk_len * 8, data );
data = &(data[chunk_len]);
len -= chunk_len;
}
return PLATFORM_OK;
}
int platform_spi_transaction( uint8_t id, uint8_t cmd_bitlen, spi_data_type cmd_data,
uint8_t addr_bitlen, spi_data_type addr_data,
uint16_t mosi_bitlen, uint8_t dummy_bitlen, int16_t miso_bitlen )
{
if ((cmd_bitlen > 16) ||
(addr_bitlen > 32) ||
(mosi_bitlen > 512) ||
(dummy_bitlen > 256) ||
(miso_bitlen > 512))
return PLATFORM_ERR;
spi_mast_transaction( id, cmd_bitlen, cmd_data, addr_bitlen, addr_data, mosi_bitlen, dummy_bitlen, miso_bitlen );
return PLATFORM_OK;
}
// ****************************************************************************
// Flash access functions
/*
* Assumptions:
* > toaddr is INTERNAL_FLASH_WRITE_UNIT_SIZE aligned
* > size is a multiple of INTERNAL_FLASH_WRITE_UNIT_SIZE
*/
uint32_t platform_s_flash_write( const void *from, uint32_t toaddr, uint32_t size )
{
SpiFlashOpResult r;
const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1;
uint32_t *apbuf = NULL;
uint32_t fromaddr = (uint32_t)from;
if( (fromaddr & blkmask ) || (fromaddr >= INTERNAL_FLASH_MAPPED_ADDRESS)) {
apbuf = (uint32_t *)malloc(size);
if(!apbuf)
return 0;
memcpy(apbuf, from, size);
}
system_soft_wdt_feed ();
r = flash_write(toaddr, apbuf?(uint32_t *)apbuf:(uint32_t *)from, size);
if(apbuf)
free(apbuf);
if(SPI_FLASH_RESULT_OK == r)
return size;
else{
NODE_ERR( "ERROR in flash_write: r=%d at %p\n", r, toaddr);
return 0;
}
}
/*
* Assumptions:
* > fromaddr is INTERNAL_FLASH_READ_UNIT_SIZE aligned
* > size is a multiple of INTERNAL_FLASH_READ_UNIT_SIZE
*/
uint32_t platform_s_flash_read( void *to, uint32_t fromaddr, uint32_t size )
{
if (size==0)
return 0;
SpiFlashOpResult r;
system_soft_wdt_feed ();
const uint32_t blkmask = (INTERNAL_FLASH_READ_UNIT_SIZE - 1);
if( ((uint32_t)to) & blkmask )
{
uint32_t size2=size-INTERNAL_FLASH_READ_UNIT_SIZE;
uint32_t* to2=(uint32_t*)((((uint32_t)to)&(~blkmask))+INTERNAL_FLASH_READ_UNIT_SIZE);
r = flash_read(fromaddr, to2, size2);
if(SPI_FLASH_RESULT_OK == r)
{
memmove(to,to2,size2); // This is overlapped so must be memmove and not memcpy
char back[ INTERNAL_FLASH_READ_UNIT_SIZE ] __attribute__ ((aligned(INTERNAL_FLASH_READ_UNIT_SIZE)));
r=flash_read(fromaddr+size2,(uint32*)back,INTERNAL_FLASH_READ_UNIT_SIZE);
memcpy((uint8_t*)to+size2,back,INTERNAL_FLASH_READ_UNIT_SIZE);
}
}
else
r = flash_read(fromaddr, (uint32_t *)to, size);
if(SPI_FLASH_RESULT_OK == r)
return size;
else{
NODE_ERR( "ERROR in flash_read: r=%d at %p\n", r, fromaddr);
return 0;
}
}
int platform_flash_erase_sector( uint32_t sector_id )
{
NODE_DBG( "flash_erase_sector(%u)\n", sector_id);
return flash_erase( sector_id ) == SPI_FLASH_RESULT_OK ? PLATFORM_OK : PLATFORM_ERR;
}
static uint32_t flash_map_meg_offset (void) {
uint32_t cache_ctrl = READ_PERI_REG(CACHE_FLASH_CTRL_REG);
if (!(cache_ctrl & CACHE_FLASH_ACTIVE))
return -1;
uint32_t m0 = (cache_ctrl & CACHE_FLASH_MAPPED0) ? 0x100000 : 0;
uint32_t m1 = (cache_ctrl & CACHE_FLASH_MAPPED1) ? 0x200000 : 0;
return m0 + m1;
}
uint32_t platform_flash_mapped2phys (uint32_t mapped_addr) {
uint32_t meg = flash_map_meg_offset();
return (meg&1) ? -1 : mapped_addr - INTERNAL_FLASH_MAPPED_ADDRESS + meg ;
}
uint32_t platform_flash_phys2mapped (uint32_t phys_addr) {
uint32_t meg = flash_map_meg_offset();
return (meg&1) ? -1 : phys_addr + INTERNAL_FLASH_MAPPED_ADDRESS - meg;
}
uint32_t platform_flash_get_partition (uint32_t part_id, uint32_t *addr) {
partition_item_t pt = {0,0,0};
system_partition_get_item(SYSTEM_PARTITION_CUSTOMER_BEGIN + part_id, &pt);
if (addr) {
*addr = pt.addr;
}
return pt.type == 0 ? 0 : pt.size;
}
/*
* The Reboot Config Records are stored in the 4K flash page at offset 0x10000 (in
* the linker section .irom0.ptable) and is used for configuration changes that
* persist across reboots. This page contains a sequence of records, each of which
* is word-aligned and comprises a header and body of length 0-64 words. The 4-byte
* header comprises a length, a RCR id, and two zero fill bytes. These are written
* using flash NAND writing rules, so any unused area (all 0xFF) can be overwritten
* by a new record without needing to erase the RCR page. Ditto any existing
* record can be marked as deleted by over-writing the header with the id set to
* PLATFORM_RCR_DELETED (0x0). Note that the last word is not used additions so a
* scan for PLATFORM_RCR_FREE will always terminate.
*
* The number of updates is extremely low, so it is unlikely (but possible) that
* the page might fill with the churn of new RCRs, so in this case the write function
* compacts the page by eliminating all deleted records. This does require a flash
* sector erase.
*
* NOTE THAT THIS ALGO ISN'T 100% ROBUST, eg. a powerfail between the erase and the
* wite-back will leave the page unitialised; ditto a powerfail between the record
* appned and old deletion will leave two records. However this is better than the
* general integrity of SPIFFS, for example and the vulnerable window is typically
* less than 1 mSec every configuration change.
*/
extern uint32_t _irom0_text_start[];
#define RCR_WORD(i) (_irom0_text_start[i])
#define WORDSIZE sizeof(uint32_t)
#define FLASH_SECTOR_WORDS (INTERNAL_FLASH_SECTOR_SIZE/WORDSIZE)
uint32_t platform_rcr_read (uint8_t rec_id, void **rec) {
platform_rcr_t *rcr = (platform_rcr_t *) &RCR_WORD(0);
uint32_t i = 0;
/*
* Chain down the RCR page looking for a record that matches the record
* ID. If found return the size of the record and optionally its address.
*/
while (1) {
// copy RCR header into RAM to avoid unaligned exceptions
platform_rcr_t r = (platform_rcr_t) RCR_WORD(i);
if (r.id == rec_id) {
if (rec) *rec = &RCR_WORD(i+1);
return r.len * WORDSIZE;
} else if (r.id == PLATFORM_RCR_FREE) {
break;
}
i += 1 + r.len;
}
return ~0;
}
uint32_t platform_rcr_get_startup_option() {
static uint32_t option = ~0;
uint32_t *option_p;
if (option == ~0) {
option = 0;
if (platform_rcr_read(PLATFORM_RCR_STARTUP_OPTION, (void **) &option_p) == sizeof(*option_p)) {
option = *option_p;
}
}
return option;
}
uint32_t platform_rcr_delete (uint8_t rec_id) {
uint32_t *rec = NULL;
platform_rcr_read(rec_id, (void**)&rec);
if (rec) {
uint32_t *pHdr = rec - 1; /* the header is the word proceeding the rec */
platform_rcr_t hdr = {.hdr = *pHdr};
hdr.id = PLATFORM_RCR_DELETED;
platform_s_flash_write(&hdr, platform_flash_mapped2phys((uint32_t) pHdr), WORDSIZE);
return 0;
}
return ~0;
}
/*
* Chain down the RCR page and look for an existing record that matches the record
* ID and the first free record. If there is enough room, then append the new
* record and mark any previous record as deleted. If the page is full then GC,
* erase the page and rewrite with the GCed content.
*/
#define MAXREC 65
uint32_t platform_rcr_write (uint8_t rec_id, const void *inrec, uint8_t n) {
uint32_t nwords = (n+WORDSIZE-1) / WORDSIZE;
uint32_t reclen = (nwords+1)*WORDSIZE;
uint32_t *prev=NULL, *new = NULL;
// make local stack copy of inrec including header and any trailing fill bytes
uint32_t rec[MAXREC];
if (nwords >= MAXREC)
return ~0;
rec[0] = 0; rec[nwords] = 0;
((platform_rcr_t *) rec)->id = rec_id;
((platform_rcr_t *) rec)->len = nwords;
memcpy(rec+1, inrec, n); // let memcpy handle 0 and odd byte cases
// find previous copy if any and exit if the replacement is the same value
uint8_t np = platform_rcr_read (rec_id, (void **) &prev);
if (prev && !os_memcmp(prev-1, rec, reclen))
return n;
// find next free slot
platform_rcr_read (PLATFORM_RCR_FREE, (void **) &new);
uint32_t nfree = &RCR_WORD(FLASH_SECTOR_WORDS) - new;
// Is there enough room to fit the rec in the RCR page?
if (nwords < nfree) { // Note inequality needed to leave at least one all set word
uint32_t addr = platform_flash_mapped2phys((uint32_t)&new[-1]);
platform_s_flash_write(rec, addr, reclen);
if (prev) { // If a previous exists, then overwrite the hdr as DELETED
platform_rcr_t rcr = {0};
addr = platform_flash_mapped2phys((uint32_t)&prev[-1]);
rcr.id = PLATFORM_RCR_DELETED; rcr.len = np/WORDSIZE;
platform_s_flash_write(&rcr, addr, WORDSIZE);
}
} else {
platform_rcr_t *rcr = (platform_rcr_t *) &RCR_WORD(0), newrcr = {0};
uint32_t flash_addr = platform_flash_mapped2phys((uint32_t)&RCR_WORD(0));
uint32_t *buf, i, l, pass;
for (pass = 1; pass <= 2; pass++) {
for (i = 0, l = 0; i < FLASH_SECTOR_WORDS - nfree; ) {
platform_rcr_t r = rcr[i]; // again avoid unaligned exceptions
if (r.id == PLATFORM_RCR_FREE)
break;
if (r.id != PLATFORM_RCR_DELETED && r.id != rec_id) {
if (pass == 2) memcpy(buf + l, rcr + i, (r.len + 1)*WORDSIZE);
l += r.len + 1;
}
i += r.len + 1;
}
if (pass == 2) memcpy(buf + l, rec, reclen);
l += nwords + 1;
if (pass == 1) buf = malloc(l * WORDSIZE);
if (l >= FLASH_SECTOR_WORDS || !buf)
return ~0;
}
platform_flash_erase_sector(flash_addr/INTERNAL_FLASH_SECTOR_SIZE);
platform_s_flash_write(buf, flash_addr, l*WORDSIZE);
free(buf);
}
return nwords*WORDSIZE;
}
void* platform_print_deprecation_note( const char *msg, const char *time_frame)
{
printf( "Warning, deprecated API! %s. It will be removed %s. See documentation for details.\n", msg, time_frame );
}
#define TH_MONIKER 0x68680000
#define TH_MASK 0xFFF80000
#define TH_UNMASK (~TH_MASK)
#define TH_SHIFT 2
#define TH_ALLOCATION_BRICK 4 // must be a power of 2
#define TASK_DEFAULT_QUEUE_LEN 8
#define TASK_PRIORITY_MASK 3
#define TASK_PRIORITY_COUNT 3
/*
* Private struct to hold the 3 event task queues and the dispatch callbacks
*/
static struct taskQblock {
os_event_t *task_Q[TASK_PRIORITY_COUNT];
platform_task_callback_t *task_func;
int task_count;
} TQB = {0};
static void platform_task_dispatch (os_event_t *e) {
platform_task_handle_t handle = e->sig;
if ( (handle & TH_MASK) == TH_MONIKER) {
uint16_t entry = (handle & TH_UNMASK) >> TH_SHIFT;
uint8_t priority = handle & TASK_PRIORITY_MASK;
if ( priority <= PLATFORM_TASK_PRIORITY_HIGH &&
TQB.task_func &&
entry < TQB.task_count ){
/* call the registered task handler with the specified parameter and priority */
TQB.task_func[entry](e->par, priority);
return;
}
}
/* Invalid signals are ignored */
NODE_DBG ( "Invalid signal issued: %08x", handle);
}
/*
* Initialise the task handle callback for a given priority.
*/
static int task_init_handler (void) {
int p, qlen = TASK_DEFAULT_QUEUE_LEN;
for (p = 0; p < TASK_PRIORITY_COUNT; p++){
TQB.task_Q[p] = (os_event_t *) malloc( sizeof(os_event_t)*qlen );
if (TQB.task_Q[p]) {
os_memset(TQB.task_Q[p], 0, sizeof(os_event_t)*qlen);
system_os_task(platform_task_dispatch, p, TQB.task_Q[p], TASK_DEFAULT_QUEUE_LEN);
} else {
NODE_DBG ( "Malloc failure in platform_task_init_handler" );
return PLATFORM_ERR;
}
}
}
/*
* Allocate a task handle in the relevant TCB.task_Q. Note that these Qs are resized
* as needed growing in 4 unit bricks. No GC is adopted so handles are permanently
* allocated during boot life. This isn't an issue in practice as only a few handles
* are created per priority during application init and the more volitile Lua tasks
* are allocated in the Lua registery using the luaX interface which is layered on
* this mechanism.
*/
platform_task_handle_t platform_task_get_id (platform_task_callback_t t) {
if ( (TQB.task_count & (TH_ALLOCATION_BRICK - 1)) == 0 ) {
TQB.task_func = (platform_task_callback_t *) realloc(
TQB.task_func,
sizeof(platform_task_callback_t) * (TQB.task_count+TH_ALLOCATION_BRICK));
if (!TQB.task_func) {
NODE_DBG ( "Malloc failure in platform_task_get_id");
return 0;
}
os_memset (TQB.task_func+TQB.task_count, 0,
sizeof(platform_task_callback_t)*TH_ALLOCATION_BRICK);
}
TQB.task_func[TQB.task_count++] = t;
return TH_MONIKER + ((TQB.task_count-1) << TH_SHIFT);
}