wifi-tally_Oostendam/nodemcu-firmware/app/driver/NmraDcc.c

1161 lines
38 KiB
C
Raw Permalink Normal View History

2021-09-27 19:52:27 +00:00
//------------------------------------------------------------------------
//
// Model Railroading with Arduino - NmraDcc.cpp
//
// Copyright (c) 2008 - 2017 Alex Shepherd
//
// This source file is subject of the GNU general public license 2,
// that is available at the world-wide-web at
// http://www.gnu.org/licenses/gpl.txt
//
//------------------------------------------------------------------------
//
// file: NmraDcc.cpp
// author: Alex Shepherd
// webpage: http://mrrwa.org/
// history: 2008-03-20 Initial Version
// 2011-06-26 Migrated into Arduino library from OpenDCC codebase
// 2014 Added getAddr to NmraDcc Geoff Bunza
// 2015-11-06 Martin Pischky (martin@pischky.de):
// Experimental Version to support 14 speed steps
// and new signature of notifyDccSpeed and notifyDccFunc
// 2015-12-16 Version without use of Timer0 by Franz-Peter Müller
// 2016-07-16 handle glitches on DCC line
// 2016-08-20 added ESP8266 support by Sven (littleyoda)
// 2017-01-19 added STM32F1 support by Franz-Peter
// 2017-11-29 Ken West (kgw4449@gmail.com):
// Minor fixes to pass NMRA Baseline Conformance Tests.
// 2018-12-17 added ESP32 support by Trusty (thierry@lapajaparis.net)
// 2019-02-17 added ESP32 specific changes by Hans Tanner
//
//------------------------------------------------------------------------
//
// purpose: Provide a simplified interface to decode NMRA DCC packets
// and build DCC Mobile and Stationary Decoders
//
//------------------------------------------------------------------------
// NodeMCU Lua port by @voborsky
// #define NODE_DEBUG
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "platform.h"
#include "user_interface.h"
#include "task/task.h"
#include "driver/NmraDcc.h"
#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"
#define BYTE_TO_BINARY(byte) \
(byte & 0x80 ? '1' : '0'), \
(byte & 0x40 ? '1' : '0'), \
(byte & 0x20 ? '1' : '0'), \
(byte & 0x10 ? '1' : '0'), \
(byte & 0x08 ? '1' : '0'), \
(byte & 0x04 ? '1' : '0'), \
(byte & 0x02 ? '1' : '0'), \
(byte & 0x01 ? '1' : '0')
//------------------------------------------------------------------------
// DCC Receive Routine
//
// Howto: uses two interrupts: a rising edge in DCC polarity triggers INTx
// in INTx handler, Timer0 CompareB with a delay of 80us is started.
// On Timer0 CompareB Match the level of DCC is evaluated and
// parsed.
//
// |<-----116us----->|
//
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
// ^-INTx
// |----87us--->|
// ^Timer-INT: reads zero
//
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________
// ^-INTx
// |----------->|
// ^Timer-INT: reads one
//
// new DCC Receive Routine without Timer0 ........................................................
//
// Howto: uses only one interrupt at the rising or falling edge of the DCC signal
// The time between two edges is measured to determine the bit value
// Synchronising to the edge of the first part of a bit is done after recognizing the start bit
// During synchronizing each part of a bit is detected ( Interruptmode 'change' )
//
// |<-----116us----->|
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
// |<--------146us------>|
// ^-INTx ^-INTx
// less than 138us: its a one-Bit
//
//
// |<-----------------232us----------->|
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________XXXXXXXX__________
// |<--------146us------->|
// ^-INTx ^-INTx
// greater than 138us: its a zero bit
//
//
//
//
//------------------------------------------------------------------------
#define abs(a) ((a) > 0 ? (a) : (0-a))
#define MAX_ONEBITFULL 146
#define MAX_PRAEAMBEL 146
#define MAX_ONEBITHALF 82
#define MIN_ONEBITFULL 82
#define MIN_ONEBITHALF 35
#define MAX_BITDIFF 18
#ifdef NODE_DEBUG
#define PULLUP PLATFORM_GPIO_PULLUP
#define OUTPUT PLATFORM_GPIO_OUTPUT
#define HIGH PLATFORM_GPIO_HIGH
#define LOW PLATFORM_GPIO_LOW
#define MODE_TP1 platform_gpio_mode( 5, OUTPUT, PULLUP ); // GPIO 14
#define SET_TP1 platform_gpio_write(5, HIGH);
#define CLR_TP1 platform_gpio_write(5, LOW);
#define MODE_TP2 platform_gpio_mode( 6, OUTPUT, PULLUP ); // GPIO 12
#define SET_TP2 platform_gpio_write(6, HIGH);
#define CLR_TP2 platform_gpio_write(6, LOW);
#define MODE_TP3 platform_gpio_mode( 7, OUTPUT, PULLUP ); // GPIO 13
#define SET_TP3 platform_gpio_write(7, HIGH);
#define CLR_TP3 platform_gpio_write(7, LOW);
#define MODE_TP4 platform_gpio_mode( 8, OUTPUT, PULLUP ); // GPIO 15
#define SET_TP4 platform_gpio_write(8, HIGH);
#define CLR_TP4 platform_gpio_write(8, LOW);
#else
#define MODE_TP1
#define SET_TP1
#define CLR_TP1
#define MODE_TP2
#define SET_TP2
#define CLR_TP2
#define MODE_TP3
#define SET_TP3
#define CLR_TP3
#define MODE_TP4
#define SET_TP4
#define CLR_TP4
#endif
static uint8_t ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
static int16_t bitMax, bitMin;
DCC_MSG Msg ;
typedef enum
{
WAIT_PREAMBLE = 0,
WAIT_START_BIT,
WAIT_DATA,
WAIT_END_BIT
}
DccRxWaitState ;
typedef enum
{
OPS_INS_RESERVED = 0,
OPS_INS_VERIFY_BYTE,
OPS_INS_BIT_MANIPULATION,
OPS_INS_WRITE_BYTE
}
OpsInstructionType;
struct DccRx_t
{
DccRxWaitState State ;
uint8_t BitCount ;
uint8_t TempByte ;
DCC_MSG PacketBuf;
DCC_MSG PacketCopy;
}
DccRx ;
typedef struct
{
uint8_t Flags ;
uint8_t OpsModeAddressBaseCV ;
uint8_t inServiceMode ;
long LastServiceModeMillis ;
uint8_t PageRegister ; // Used for Paged Operations in Service Mode Programming
uint8_t DuplicateCount ;
DCC_MSG LastMsg ;
uint8_t IntPin;
uint8_t IntBitmask;
int16_t myDccAddress; // Cached value of DCC Address from CVs
uint8_t inAccDecDCCAddrNextReceivedMode;
#ifdef DCC_DEBUG
uint8_t IntCount;
uint8_t TickCount;
#endif
}
DCC_PROCESSOR_STATE ;
DCC_PROCESSOR_STATE DccProcState ;
task_handle_t DataReady_taskid;
static uint32_t ICACHE_RAM_ATTR InterruptHandler (uint32_t ret_gpio_status)
{
// This function really is running at interrupt level with everything
// else masked off. It should take as little time as necessary.
uint32 gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS);
if ((gpio_status & DccProcState.IntBitmask) == 0) {
return ret_gpio_status;
}
GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, gpio_status & DccProcState.IntBitmask);
uint32_t actMicros = system_get_time();
ret_gpio_status &= ~(DccProcState.IntBitmask);
// Bit evaluation without Timer 0 ------------------------------
uint8_t DccBitVal;
static int8_t bit1, bit2 ;
static unsigned long lastMicros = 0;
static uint8_t halfBit;
unsigned long bitMicros;
SET_TP3;
bitMicros = actMicros-lastMicros;
if ( bitMicros < bitMin ) {
// too short - my be false interrupt due to glitch or false protocol -> ignore
CLR_TP3;
return ret_gpio_status; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
DccBitVal = ( bitMicros < bitMax );
lastMicros = actMicros;
#ifdef NODE_DEBUG
if(DccBitVal) {SET_TP2;} else {CLR_TP2;};
#endif
#ifdef DCC_DEBUG
DccProcState.TickCount++;
#endif
switch( DccRx.State )
{
case WAIT_PREAMBLE:
if( DccBitVal )
{
SET_TP1;
DccRx.BitCount++;
if( DccRx.BitCount > 10 ) {
DccRx.State = WAIT_START_BIT ;
// While waiting for the start bit, detect halfbit lengths. We will detect the correct
// sync and detect whether we see a false (e.g. motorola) protocol
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), GPIO_PIN_INTR_ANYEDGE);
halfBit = 0;
bitMax = MAX_ONEBITHALF;
bitMin = MIN_ONEBITHALF;
CLR_TP1;
}
} else {
SET_TP1;
DccRx.BitCount = 0 ;
CLR_TP1;
}
break;
case WAIT_START_BIT:
// we are looking for first half "0" bit after preamble
switch ( halfBit ) {
case 0: //SET_TP1;
// check first part
if ( DccBitVal ) {
// is still 1-bit (Preamble)
halfBit=1;
bit1=bitMicros;
} else {
// was "0" half bit, maybe the startbit
SET_TP1;
halfBit = 4;
CLR_TP1;
}
break;
case 1: //SET_TP1; // previous halfbit was '1'
if ( DccBitVal ) {
// its a '1' halfBit -> we are still in the preamble
halfBit = 0;
bit2=bitMicros;
DccRx.BitCount++;
if( abs(bit2-bit1) > MAX_BITDIFF ) {
// the length of the 2 halfbits differ too much -> wrong protokoll
CLR_TP2;
CLR_TP3;
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0;
SET_TP4;
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge);
SET_TP3;
CLR_TP4;
}
} else {
// first '0' half detected in second halfBit
// wrong sync or not a DCC protokoll
CLR_TP3;
halfBit = 3;
SET_TP3;
}
break;
case 3: //SET_TP1; // previous halfbit was '0' in second halfbit
if ( DccBitVal ) {
// its a '1' halfbit -> we got only a half '0' bit -> cannot be DCC
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0;
} else {
// we got two '0' halfbits -> it's the startbit
// but sync is NOT ok, change IRQ edge.
if ( ISREdge == GPIO_PIN_INTR_POSEDGE ) ISREdge = GPIO_PIN_INTR_NEGEDGE; else ISREdge = GPIO_PIN_INTR_POSEDGE;
DccRx.State = WAIT_DATA ;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
DccRx.PacketBuf.Size = 0;
DccRx.PacketBuf.PreambleBits = 0;
for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;
DccRx.PacketBuf.PreambleBits = DccRx.BitCount;
DccRx.BitCount = 0 ;
DccRx.TempByte = 0 ;
}
SET_TP4;
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge);
CLR_TP1;
CLR_TP4;
break;
case 4: SET_TP1; // previous (first) halfbit was 0
// if this halfbit is 0 too, we got the startbit
if ( DccBitVal ) {
// second halfbit is 1 -> unknown protokoll
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0;
} else {
// we got the startbit
DccRx.State = WAIT_DATA ;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
DccRx.PacketBuf.Size = 0;
DccRx.PacketBuf.PreambleBits = 0;
for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;
DccRx.PacketBuf.PreambleBits = DccRx.BitCount;
DccRx.BitCount = 0 ;
DccRx.TempByte = 0 ;
}
CLR_TP1;
SET_TP4;
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[DccProcState.IntPin]), ISREdge);
CLR_TP4;
break;
}
break;
case WAIT_DATA:
DccRx.BitCount++;
DccRx.TempByte = ( DccRx.TempByte << 1 ) ;
if( DccBitVal )
DccRx.TempByte |= 1 ;
if( DccRx.BitCount == 8 )
{
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
{
DccRx.State = WAIT_PREAMBLE ;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0 ;
}
else
{
DccRx.State = WAIT_END_BIT ;
DccRx.PacketBuf.Data[ DccRx.PacketBuf.Size++ ] = DccRx.TempByte ;
}
}
break;
case WAIT_END_BIT:
DccRx.BitCount++;
if( DccBitVal ) // End of packet?
{
CLR_TP3;
DccRx.State = WAIT_PREAMBLE ;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.PacketCopy = DccRx.PacketBuf ;
uint8_t param;
task_post_high(DataReady_taskid, (os_param_t) &param);
SET_TP3;
}
else // Get next Byte
// KGW - Abort immediately if packet is too long.
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
{
DccRx.State = WAIT_PREAMBLE ;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
DccRx.BitCount = 0 ;
}
else
{
DccRx.State = WAIT_DATA ;
DccRx.BitCount = 0 ;
DccRx.TempByte = 0 ;
}
}
CLR_TP1;
CLR_TP3;
return ret_gpio_status;
}
uint8_t validCV( uint16_t CV, uint8_t Writable )
{
if( notifyCVResetFactoryDefault && (CV == CV_MANUFACTURER_ID ) && Writable )
notifyCVResetFactoryDefault();
if( notifyCVValid )
return notifyCVValid( CV, Writable ) ;
return 0;
}
uint8_t readCV( unsigned int CV )
{
if( notifyCVRead )
return notifyCVRead( CV ) ;
return 0;
}
uint8_t writeCV( unsigned int CV, uint8_t Value)
{
switch( CV )
{
case CV_29_CONFIG:
// copy addressmode Bit to Flags
DccProcState.Flags = ( DccProcState.Flags & ~FLAGS_CV29_BITS) | (Value & FLAGS_CV29_BITS);
// no break, because myDccAdress must also be reset
case CV_ACCESSORY_DECODER_ADDRESS_LSB: // Also same CV for CV_MULTIFUNCTION_PRIMARY_ADDRESS
case CV_ACCESSORY_DECODER_ADDRESS_MSB:
case CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB:
case CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB:
DccProcState.myDccAddress = -1; // Assume any CV Write Operation might change the Address
}
if( notifyCVWrite )
return notifyCVWrite( CV, Value ) ;
return 0;
}
uint16_t getMyAddr(void)
{
uint8_t CV29Value ;
if( DccProcState.myDccAddress != -1 ) // See if we can return the cached value
return( DccProcState.myDccAddress );
CV29Value = readCV( CV_29_CONFIG ) ;
if( CV29Value & CV29_ACCESSORY_DECODER ) // Accessory Decoder?
{
if( CV29Value & CV29_OUTPUT_ADDRESS_MODE )
DccProcState.myDccAddress = ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) << 8 ) | readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB );
else
DccProcState.myDccAddress = ( ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) & 0b00000111) << 6 ) | ( readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB ) & 0b00111111) ;
}
else // Multi-Function Decoder?
{
if( CV29Value & CV29_EXT_ADDRESSING ) // Two Byte Address?
DccProcState.myDccAddress = ( ( readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB ) - 192 ) << 8 ) | readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB ) ;
else
DccProcState.myDccAddress = readCV( 1 ) ;
}
return DccProcState.myDccAddress ;
}
void processDirectOpsOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value )
{
// is it a Byte Operation
if( Cmd & 0x04 )
{
// Perform the Write Operation
if( Cmd & 0x08 )
{
if( validCV( CVAddr, 1 ) )
{
writeCV( CVAddr, Value );
}
}
}
// Perform the Bit-Wise Operation
else
{
uint8_t BitMask = (1 << (Value & 0x07) ) ;
uint8_t BitValue = Value & 0x08 ;
uint8_t BitWrite = Value & 0x10 ;
uint8_t tempValue = readCV( CVAddr ) ; // Read the Current CV Value
// Perform the Bit Write Operation
if( BitWrite )
{
if( validCV( CVAddr, 1 ) )
{
if( BitValue )
tempValue |= BitMask ; // Turn the Bit On
else
tempValue &= ~BitMask ; // Turn the Bit Off
writeCV( CVAddr, tempValue );
}
}
}
}
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Cmd, uint8_t Data1, uint8_t Data2 )
{
uint8_t speed ;
uint16_t CVAddr ;
DCC_DIRECTION dir ;
DCC_SPEED_STEPS speedSteps ;
uint8_t CmdMasked = Cmd & 0b11100000 ;
// NODE_DBG("[dcc_processMultiFunctionMessage] Addr: %d, Type: %d, Cmd: %d ("BYTE_TO_BINARY_PATTERN"), Data: %d, %d, CmdMasked="BYTE_TO_BINARY_PATTERN"\n", Addr, AddrType, Cmd, BYTE_TO_BINARY(Cmd), Data1, Data2, BYTE_TO_BINARY(CmdMasked));
// If we are an Accessory Decoder
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
{
// NODE_DBG("[dcc_processMultiFunctionMessage] DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER\n");
// and this isn't an Ops Mode Write or we are NOT faking the Multifunction Ops mode address in CV 33+34 or
// it's not our fake address, then return
if( ( CmdMasked != 0b11100000 ) || ( DccProcState.OpsModeAddressBaseCV == 0 ) )
return ;
uint16_t FakeOpsAddr = readCV( DccProcState.OpsModeAddressBaseCV ) | ( readCV( DccProcState.OpsModeAddressBaseCV + 1 ) << 8 ) ;
uint16_t OpsAddr = Addr & 0x3FFF ;
if( OpsAddr != FakeOpsAddr )
return ;
}
// We are looking for FLAGS_MY_ADDRESS_ONLY but it does not match and it is not a Broadcast Address then return
else if( ( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY ) && ( Addr != getMyAddr() ) && ( Addr != 0 ) )
return ;
NODE_DBG("[dcc_processMultiFunctionMessage] CmdMasked: %x\n", CmdMasked);
switch( CmdMasked )
{
case 0b00000000: // Decoder Control
switch( Cmd & 0b00001110 )
{
case 0b00000000:
if( notifyDccReset && ( Cmd & 0b00000001 ) ) // Hard Reset
if( notifyDccReset)
notifyDccReset( 1 ) ;
break ;
case 0b00000010: // Factory Test
break ;
case 0b00000110: // Set Decoder Flags
break ;
case 0b00001010: // Set Advanced Addressing
break ;
case 0b00001110: // Decoder Acknowledgment
break ;
default: // Reserved
;
}
break ;
case 0b00100000: // Advanced Operations
switch( Cmd & 0b00011111 )
{
case 0b00011111:
if( notifyDccSpeed )
{
switch( Data1 & 0b01111111 )
{
case 0b00000000: // 0=STOP
speed = 1 ; // => 1
break ;
case 0b00000001: // 1=EMERGENCY_STOP
speed = 0 ; // => 0
break ;
default: // 2..127
speed = (Data1 & 0b01111111) ;
}
dir = (DCC_DIRECTION) ((Data1 & 0b10000000) >> 7) ;
notifyDccSpeed( Addr, AddrType, speed, dir, SPEED_STEP_128 ) ;
}
}
break;
case 0b01000000:
case 0b01100000:
//TODO should we cache this info in DCC_PROCESSOR_STATE.Flags ?
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
speedSteps = (readCV( CV_29_CONFIG ) & CV29_F0_LOCATION) ? SPEED_STEP_28 : SPEED_STEP_14 ;
#else
speedSteps = SPEED_STEP_28 ;
#endif
if( notifyDccSpeed )
{
switch( Cmd & 0b00011111 )
{
case 0b00000000: // 0 0000 = STOP
case 0b00010000: // 1 0000 = STOP
speed = 1 ; // => 1
break ;
case 0b00000001: // 0 0001 = EMERGENCY STOP
case 0b00010001: // 1 0001 = EMERGENCY STOP
speed = 0 ; // => 0
break ;
default:
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
if( speedSteps == SPEED_STEP_14 )
{
speed = (Cmd & 0b00001111) ; // => 2..15
}
else
{
#endif
speed = (((Cmd & 0b00001111) << 1 ) | ((Cmd & 0b00010000) >> 4)) - 2 ; // => 2..29
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
}
#endif
}
dir = (DCC_DIRECTION) ((Cmd & 0b00100000) >> 5) ;
notifyDccSpeed( Addr, AddrType, speed, dir, speedSteps ) ;
}
if( notifyDccSpeedRaw )
notifyDccSpeedRaw(Addr, AddrType, Cmd );
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
if( notifyDccFunc && (speedSteps == SPEED_STEP_14) )
{
// function light is controlled by this package
uint8_t fn0 = (Cmd & 0b00010000) ;
notifyDccFunc( Addr, AddrType, FN_0, fn0 ) ;
}
#endif
break;
case 0b10000000: // Function Group 0..4
if( notifyDccFunc )
{
// function light is controlled by this package (28 or 128 speed steps)
notifyDccFunc( Addr, AddrType, FN_0_4, Cmd & 0b00011111 ) ;
}
break;
case 0b10100000: // Function Group 5..8
if( notifyDccFunc)
{
if (Cmd & 0b00010000 )
notifyDccFunc( Addr, AddrType, FN_5_8, Cmd & 0b00001111 ) ;
else
notifyDccFunc( Addr, AddrType, FN_9_12, Cmd & 0b00001111 ) ;
}
break;
case 0b11000000: // Feature Expansion Instruction
switch(Cmd & 0b00011111)
{
case 0b00011110:
if( notifyDccFunc )
notifyDccFunc( Addr, AddrType, FN_13_20, Data1 ) ;
break;
case 0b00011111:
if( notifyDccFunc )
notifyDccFunc( Addr, AddrType, FN_21_28, Data1 ) ;
break;
}
break;
case 0b11100000: // CV Access
CVAddr = ( ( ( Cmd & 0x03 ) << 8 ) | Data1 ) + 1 ;
processDirectOpsOperation( Cmd, CVAddr, Data2 ) ;
break;
}
}
#endif
/////////////////////////////////////////////////////////////////////////
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
void processServiceModeOperation( DCC_MSG * pDccMsg )
{
uint16_t CVAddr ;
uint8_t Value ;
if( pDccMsg->Size == 3) // 3 Byte Packets are for Address Only, Register and Paged Mode
{
uint8_t RegisterAddr ;
NODE_DBG("[dcc_processServiceModeOperation] 3-BytePkt\n");
RegisterAddr = pDccMsg->Data[0] & 0x07 ;
Value = pDccMsg->Data[1] ;
if( RegisterAddr == 5 )
{
DccProcState.PageRegister = Value ;
}
else
{
if( RegisterAddr == 4 )
CVAddr = CV_29_CONFIG ;
else if( ( RegisterAddr <= 3 ) && ( DccProcState.PageRegister > 0 ) )
CVAddr = ( ( DccProcState.PageRegister - 1 ) * 4 ) + RegisterAddr + 1 ;
else
CVAddr = RegisterAddr + 1 ;
if( pDccMsg->Data[0] & 0x08 ) // Perform the Write Operation
{
if( validCV( CVAddr, 1 ) )
{
writeCV( CVAddr, Value );
}
}
}
}
else if( pDccMsg->Size == 4) // 4 Byte Packets are for Direct Byte & Bit Mode
{
NODE_DBG("[dcc_processServiceModeOperation] BB-Mode\n");
CVAddr = ( ( ( pDccMsg->Data[0] & 0x03 ) << 8 ) | pDccMsg->Data[1] ) + 1 ;
Value = pDccMsg->Data[2] ;
processDirectOpsOperation( pDccMsg->Data[0] & 0b00001100, CVAddr, Value ) ;
}
}
#endif
void resetServiceModeTimer(uint8_t inServiceMode)
{
if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode)
{
notifyServiceMode(inServiceMode);
}
// Set the Service Mode
DccProcState.inServiceMode = inServiceMode ;
DccProcState.LastServiceModeMillis = inServiceMode ? system_get_time() : 0 ;
if (notifyServiceMode && inServiceMode != DccProcState.inServiceMode)
{
notifyServiceMode(inServiceMode);
}
}
void clearDccProcState(uint8_t inServiceMode)
{
resetServiceModeTimer( inServiceMode ) ;
// Set the Page Register to it's default of 1 only on the first Reset
DccProcState.PageRegister = 1 ;
// Clear the LastMsg buffer and DuplicateCount in preparation for possible CV programming
DccProcState.DuplicateCount = 0 ;
memset( &DccProcState.LastMsg, 0, sizeof( DCC_MSG ) ) ;
}
void execDccProcessor( DCC_MSG * pDccMsg )
{
NODE_DBG("[dcc_execDccProcessor]\n");
if( ( pDccMsg->Data[0] == 0 ) && ( pDccMsg->Data[1] == 0 ) )
{
if( notifyDccReset )
notifyDccReset( 0 ) ;
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
// If this is the first Reset then perform some one-shot actions as we maybe about to enter service mode
if( DccProcState.inServiceMode )
resetServiceModeTimer( 1 ) ;
else
clearDccProcState( 1 );
#endif
}
else
{
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
if( DccProcState.inServiceMode && ( pDccMsg->Data[0] >= 112 ) && ( pDccMsg->Data[0] < 128 ) )
{
resetServiceModeTimer( 1 ) ;
if( memcmp( pDccMsg, &DccProcState.LastMsg, sizeof( DCC_MSG ) ) )
{
DccProcState.DuplicateCount = 0 ;
memcpy( &DccProcState.LastMsg, pDccMsg, sizeof( DCC_MSG ) ) ;
}
// Wait until you see 2 identicle packets before acting on a Service Mode Packet
else
{
DccProcState.DuplicateCount++ ;
processServiceModeOperation( pDccMsg ) ;
}
}
else
{
if( DccProcState.inServiceMode )
clearDccProcState( 0 );
#endif
// Idle Packet
if( ( pDccMsg->Data[0] == 0b11111111 ) && ( pDccMsg->Data[1] == 0 ) )
{
if( notifyDccIdle )
notifyDccIdle() ;
}
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
// Multi Function Decoders (7-bit address)
else if( pDccMsg->Data[0] < 128 )
processMultiFunctionMessage( pDccMsg->Data[0], DCC_ADDR_SHORT, pDccMsg->Data[1], pDccMsg->Data[2], pDccMsg->Data[3] ) ;
// Basic Accessory Decoders (9-bit) & Extended Accessory Decoders (11-bit)
else if( pDccMsg->Data[0] < 192 )
#else
else if( ( pDccMsg->Data[0] >= 128 ) && ( pDccMsg->Data[0] < 192 ) )
#endif
{
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
{
int16_t BoardAddress ;
int16_t OutputAddress ;
uint8_t TurnoutPairIndex ;
#ifdef NODE_DEBUG
// SerialPrintPacketHex(F( "eDP: AccCmd: "), pDccMsg);
#endif
BoardAddress = ( ( (~pDccMsg->Data[1]) & 0b01110000 ) << 2 ) | ( pDccMsg->Data[0] & 0b00111111 ) ;
TurnoutPairIndex = (pDccMsg->Data[1] & 0b00000110) >> 1;
NODE_DBG("[dcc_execDccProcessor] eDP: BAddr:%d, Index:%d\n", BoardAddress, TurnoutPairIndex);
// First check for Legacy Accessory Decoder Configuration Variable Access Instruction
// as it's got a different format to the others
if((pDccMsg->Size == 5) && ((pDccMsg->Data[1] & 0b10001100) == 0b00001100))
{
NODE_DBG( "eDP: Legacy Accessory Decoder CV Access Command");
// Check if this command is for our address or the broadcast address
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
{
NODE_DBG("[dcc_execDccProcessor] eDP: Board Address Not Matched\n");
return;
}
uint16_t cvAddress = ((pDccMsg->Data[1] & 0b00000011) << 8) + pDccMsg->Data[2] + 1;
uint8_t cvValue = pDccMsg->Data[3];
NODE_DBG("[dcc_execDccProcessor] eDP: CV:%d Value:%d\n", cvAddress, cvValue );
if(validCV( cvAddress, 1 ))
writeCV(cvAddress, cvValue);
return;
}
OutputAddress = (((BoardAddress - 1) << 2 ) | TurnoutPairIndex) + 1 ; //decoder output addresses start with 1, packet address range starts with 0
// ( according to NMRA 9.2.2 )
NODE_DBG("[dcc_execDccProcessor] eDP: OAddr:%d\n", OutputAddress);
if( DccProcState.inAccDecDCCAddrNextReceivedMode)
{
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
{
NODE_DBG("[dcc_execDccProcessor] eDP: Set OAddr:%d\n", OutputAddress);
//uint16_t storedOutputAddress = OutputAddress + 1; // The value stored in CV1 & 9 for Output Addressing Mode is + 1
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(OutputAddress % 256));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(OutputAddress / 256));
if( notifyDccAccOutputAddrSet )
notifyDccAccOutputAddrSet(OutputAddress);
}
else
{
NODE_DBG("[dcc_execDccProcessor] eDP: Set BAddr:%d\n", BoardAddress);
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(BoardAddress % 64));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(BoardAddress / 64));
if( notifyDccAccBoardAddrSet )
notifyDccAccBoardAddrSet(BoardAddress);
}
DccProcState.inAccDecDCCAddrNextReceivedMode = 0; // Reset the mode now that we have set the address
}
// If we're filtering addresses, does the address match our address or is it a broadcast address? If NOT then return
if( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY )
{
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) {
NODE_DBG("[dcc_execDccProcessor] AddrChk: OAddr:%d, BAddr:%d, myAddr:%d Chk=%d\n", OutputAddress, BoardAddress, getMyAddr(), OutputAddress != getMyAddr() );
if ( OutputAddress != getMyAddr() && OutputAddress < 2045 ) {
NODE_DBG("[dcc_execDccProcessor] eDP: OAddr:%d, myAddr:%d - no match\n", OutputAddress, getMyAddr() );
return;
}
} else {
if( ( BoardAddress != getMyAddr() ) && ( BoardAddress < 511 ) ) {
NODE_DBG("[dcc_execDccProcessor] eDP: BAddr:%d, myAddr:%d - no match\n", BoardAddress, getMyAddr() );
return;
}
}
NODE_DBG("[dcc_execDccProcessor] eDP: Address Matched\n");
}
if((pDccMsg->Size == 4) && ((pDccMsg->Data[1] & 0b10001001) == 1)) // Extended Accessory Decoder Control Packet Format
{
// According to the NMRA Dcc Spec the Signal State should only use the lower 5 Bits,
// however some manufacturers seem to allow/use all 8 bits, so we'll relax that constraint for now
uint8_t state = pDccMsg->Data[2] ;
NODE_DBG("[dcc_execDccProcessor] eDP: OAddr:%d Extended State:%0X\n", OutputAddress, state);
if( notifyDccSigOutputState )
notifyDccSigOutputState(OutputAddress, state);
}
else if(pDccMsg->Size == 3) // Basic Accessory Decoder Packet Format
{
uint8_t direction = pDccMsg->Data[1] & 0b00000001;
uint8_t outputPower = (pDccMsg->Data[1] & 0b00001000) >> 3;
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
{
NODE_DBG("[dcc_execDccProcessor] eDP: OAddr:%d Turnout Dir:%d Output Power:%d\n", OutputAddress, direction, outputPower);
if( notifyDccAccTurnoutOutput )
notifyDccAccTurnoutOutput( OutputAddress, direction, outputPower );
}
else
{
NODE_DBG("[dcc_execDccProcessor] eDP: Turnout Pair Index:%d Dir:%d Output Power: %d\n", TurnoutPairIndex, direction, outputPower);
if( notifyDccAccTurnoutBoard )
notifyDccAccTurnoutBoard( BoardAddress, TurnoutPairIndex, direction, outputPower );
}
}
else if(pDccMsg->Size == 6) // Accessory Decoder OPS Mode Programming
{
NODE_DBG("[dcc_execDccProcessor] eDP: OPS Mode CV Programming Command\n");
// Check for unsupported OPS Mode Addressing mode
if(((pDccMsg->Data[1] & 0b10001001) != 1) && ((pDccMsg->Data[1] & 0b10001111) != 0x80))
{
NODE_DBG("[dcc_execDccProcessor] eDP: Unsupported OPS Mode CV Addressing Mode\n");
return;
}
// Check if this command is for our address or the broadcast address
if(DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE)
{
NODE_DBG("[dcc_execDccProcessor] eDP: Check Output Address:%d\n", OutputAddress);
if((OutputAddress != getMyAddr()) && ( OutputAddress < 2045 ))
{
NODE_DBG("[dcc_execDccProcessor] eDP: Output Address Not Matched\n");
return;
}
}
else
{
NODE_DBG("[dcc_execDccProcessor] eDP: Check Board Address:%d\n", BoardAddress);
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
{
NODE_DBG("[dcc_execDccProcessor] eDP: Board Address Not Matched\n");
return;
}
}
uint16_t cvAddress = ((pDccMsg->Data[2] & 0b00000011) << 8) + pDccMsg->Data[3] + 1;
uint8_t cvValue = pDccMsg->Data[4];
OpsInstructionType insType = (OpsInstructionType)((pDccMsg->Data[2] & 0b00001100) >> 2) ;
NODE_DBG("[dcc_execDccProcessor] eDP: OPS Mode Instruction:%d\n", insType);
switch(insType)
{
case OPS_INS_RESERVED:
case OPS_INS_VERIFY_BYTE:
NODE_DBG("[dcc_execDccProcessor] eDP: Unsupported OPS Mode Instruction:%d\n", insType);
break; // We only support Write Byte or Bit Manipulation
case OPS_INS_WRITE_BYTE:
NODE_DBG("[dcc_execDccProcessor] eDP: CV:%d Value:%d\n", cvAddress, cvValue);
if(validCV( cvAddress, 1 ))
writeCV(cvAddress, cvValue);
break;
// 111CDBBB
// Where BBB represents the bit position within the CV,
// D contains the value of the bit to be verified or written,
// and C describes whether the operation is a verify bit or a write bit operation.
// C = "1" WRITE BIT
// C = "0" VERIFY BIT
case OPS_INS_BIT_MANIPULATION:
// Make sure its a Write Bit Manipulation
if((cvValue & 0b00010000) && validCV(cvAddress, 1 ))
{
uint8_t currentValue = readCV(cvAddress);
uint8_t newValueMask = 1 << (cvValue & 0b00000111);
if(cvValue & 0b00001000)
writeCV(cvAddress, currentValue | newValueMask);
else
writeCV(cvAddress, currentValue & ~newValueMask);
}
break;
}
}
}
}
#ifdef NMRA_DCC_PROCESS_MULTIFUNCTION
// Multi Function Decoders (14-bit address)
else if( pDccMsg->Data[0] < 232 )
{
uint16_t Address ;
Address = ( ( pDccMsg->Data[0] - 192 ) << 8 ) | pDccMsg->Data[1];
//TODO should we convert Address to 1 .. 10239 ?
processMultiFunctionMessage( Address, DCC_ADDR_LONG, pDccMsg->Data[2], pDccMsg->Data[3], pDccMsg->Data[4] ) ;
}
#endif
#ifdef NMRA_DCC_PROCESS_SERVICEMODE
}
#endif
}
}
static void process (os_param_t param, uint8_t prio)
{
// !!!!!! - this will not happen as we call process task only when data is ready
// if( DccProcState.inServiceMode )
// {
// if( (system_get_time() - DccProcState.LastServiceModeMillis ) > 20L )
// {
// clearDccProcState( 0 ) ;
// }
// }
// !!!!!!
// We need to do this check with interrupts disabled
//SET_TP4;
Msg = DccRx.PacketCopy ;
#ifdef DCC_DBGVAR
countOf.Tel++;
#endif
uint8_t xorValue = 0 ;
for(uint8_t i = 0; i < DccRx.PacketCopy.Size; i++)
xorValue ^= DccRx.PacketCopy.Data[i];
if(xorValue) {
#ifdef DCC_DBGVAR
NODE_DBG("[dcc_process] Cerr\n");
NODE_DBG("[dcc_process] Data dump:");
for(uint8_t i = 0; i < DccRx.PacketCopy.Size; i++)
NODE_DBG(" %x", DccRx.PacketCopy.Data[i]);
NODE_DBG("\n");
countOf.Err++;
#endif
return;// 0 ;
} else {
NODE_DBG("[dcc_process] Size: %d\tPreambleBits: %d\t%d, %d, %d, %d, %d, %d\n",
Msg.Size, Msg.PreambleBits, Msg.Data[0], Msg.Data[1], Msg.Data[2], Msg.Data[3], Msg.Data[4], Msg.Data[5]);
execDccProcessor( &Msg );
}
return;// 1 ;
}
void dcc_setup(uint8_t pin, uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, uint8_t OpsModeAddressBaseCV)
{
NODE_DBG("[dcc_setup]\n");
// Clear all the static member variables
memset( &DccRx, 0, sizeof( DccRx) );
MODE_TP1; // only for debugging and timing measurement
MODE_TP2;
MODE_TP3;
MODE_TP4;
CLR_TP1;
CLR_TP2;
CLR_TP3;
CLR_TP4;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
DccProcState.Flags = Flags ;
DccProcState.OpsModeAddressBaseCV = OpsModeAddressBaseCV ;
DccProcState.myDccAddress = -1;
DccProcState.inAccDecDCCAddrNextReceivedMode = 0;
ISREdge = GPIO_PIN_INTR_POSEDGE;
DccProcState.IntPin = pin;
DccProcState.IntBitmask = 1 << pin_num[pin];
platform_gpio_mode(pin, PLATFORM_GPIO_INT, PLATFORM_GPIO_PULLUP);
NODE_DBG("[dcc_setup] platform_gpio_register_intr_hook - pin: %d, mask: %d\n", DccProcState.IntPin, DccProcState.IntBitmask);
platform_gpio_register_intr_hook(DccProcState.IntBitmask, InterruptHandler);
gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[pin]), GPIO_PIN_INTR_POSEDGE);
// Set the Bits that control Multifunction or Accessory behaviour
// and if the Accessory decoder optionally handles Output Addressing
// we need to peal off the top two bits
writeCV( CV_29_CONFIG, ( readCV( CV_29_CONFIG ) & ~FLAGS_CV29_BITS ) | (Flags & FLAGS_CV29_BITS) ) ; //!!!!!
uint8_t doAutoFactoryDefault = 0;
if((Flags & FLAGS_AUTO_FACTORY_DEFAULT) && (readCV(CV_VERSION_ID) == 255) && (readCV(CV_MANUFACTURER_ID) == 255))
doAutoFactoryDefault = 1;
writeCV( CV_VERSION_ID, VersionId ) ;
writeCV( CV_MANUFACTURER_ID, ManufacturerId ) ;
clearDccProcState( 0 );
if(notifyCVResetFactoryDefault && doAutoFactoryDefault)
notifyCVResetFactoryDefault();
}
void dcc_close()
{
NODE_DBG("[dcc_close]\n");
platform_gpio_mode(DccProcState.IntPin, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP);
}
void dcc_init()
{
NODE_DBG("[dcc_init]\n");
DataReady_taskid = task_get_id((task_callback_t) process);
}