1290 lines
49 KiB
Python
1290 lines
49 KiB
Python
"""Define the :class:`~geographiclib.geodesic.Geodesic` class
|
|
|
|
The ellipsoid parameters are defined by the constructor. The direct and
|
|
inverse geodesic problems are solved by
|
|
|
|
* :meth:`~geographiclib.geodesic.Geodesic.Inverse` Solve the inverse
|
|
geodesic problem
|
|
* :meth:`~geographiclib.geodesic.Geodesic.Direct` Solve the direct
|
|
geodesic problem
|
|
* :meth:`~geographiclib.geodesic.Geodesic.ArcDirect` Solve the direct
|
|
geodesic problem in terms of spherical arc length
|
|
|
|
:class:`~geographiclib.geodesicline.GeodesicLine` objects can be created
|
|
with
|
|
|
|
* :meth:`~geographiclib.geodesic.Geodesic.Line`
|
|
* :meth:`~geographiclib.geodesic.Geodesic.DirectLine`
|
|
* :meth:`~geographiclib.geodesic.Geodesic.ArcDirectLine`
|
|
* :meth:`~geographiclib.geodesic.Geodesic.InverseLine`
|
|
|
|
:class:`~geographiclib.polygonarea.PolygonArea` objects can be created
|
|
with
|
|
|
|
* :meth:`~geographiclib.geodesic.Geodesic.Polygon`
|
|
|
|
The public attributes for this class are
|
|
|
|
* :attr:`~geographiclib.geodesic.Geodesic.a`
|
|
:attr:`~geographiclib.geodesic.Geodesic.f`
|
|
|
|
*outmask* and *caps* bit masks are
|
|
|
|
* :const:`~geographiclib.geodesic.Geodesic.EMPTY`
|
|
* :const:`~geographiclib.geodesic.Geodesic.LATITUDE`
|
|
* :const:`~geographiclib.geodesic.Geodesic.LONGITUDE`
|
|
* :const:`~geographiclib.geodesic.Geodesic.AZIMUTH`
|
|
* :const:`~geographiclib.geodesic.Geodesic.DISTANCE`
|
|
* :const:`~geographiclib.geodesic.Geodesic.STANDARD`
|
|
* :const:`~geographiclib.geodesic.Geodesic.DISTANCE_IN`
|
|
* :const:`~geographiclib.geodesic.Geodesic.REDUCEDLENGTH`
|
|
* :const:`~geographiclib.geodesic.Geodesic.GEODESICSCALE`
|
|
* :const:`~geographiclib.geodesic.Geodesic.AREA`
|
|
* :const:`~geographiclib.geodesic.Geodesic.ALL`
|
|
* :const:`~geographiclib.geodesic.Geodesic.LONG_UNROLL`
|
|
|
|
:Example:
|
|
|
|
>>> from geographiclib.geodesic import Geodesic
|
|
>>> # The geodesic inverse problem
|
|
... Geodesic.WGS84.Inverse(-41.32, 174.81, 40.96, -5.50)
|
|
{'lat1': -41.32,
|
|
'a12': 179.6197069334283,
|
|
's12': 19959679.26735382,
|
|
'lat2': 40.96,
|
|
'azi2': 18.825195123248392,
|
|
'azi1': 161.06766998615882,
|
|
'lon1': 174.81,
|
|
'lon2': -5.5}
|
|
|
|
"""
|
|
# geodesic.py
|
|
#
|
|
# This is a rather literal translation of the GeographicLib::Geodesic class to
|
|
# python. See the documentation for the C++ class for more information at
|
|
#
|
|
# https://geographiclib.sourceforge.io/html/annotated.html
|
|
#
|
|
# The algorithms are derived in
|
|
#
|
|
# Charles F. F. Karney,
|
|
# Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
|
|
# https://doi.org/10.1007/s00190-012-0578-z
|
|
# Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
|
|
#
|
|
# Copyright (c) Charles Karney (2011-2022) <charles@karney.com> and licensed
|
|
# under the MIT/X11 License. For more information, see
|
|
# https://geographiclib.sourceforge.io/
|
|
######################################################################
|
|
|
|
import math
|
|
import sys
|
|
from geographiclib.geomath import Math
|
|
from geographiclib.constants import Constants
|
|
from geographiclib.geodesiccapability import GeodesicCapability
|
|
|
|
class Geodesic:
|
|
"""Solve geodesic problems"""
|
|
|
|
GEOGRAPHICLIB_GEODESIC_ORDER = 6
|
|
nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nA3x_ = nA3_
|
|
nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nC3x_ = (nC3_ * (nC3_ - 1)) // 2
|
|
nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER
|
|
nC4x_ = (nC4_ * (nC4_ + 1)) // 2
|
|
maxit1_ = 20
|
|
maxit2_ = maxit1_ + sys.float_info.mant_dig + 10
|
|
|
|
tiny_ = math.sqrt(sys.float_info.min)
|
|
tol0_ = sys.float_info.epsilon
|
|
tol1_ = 200 * tol0_
|
|
tol2_ = math.sqrt(tol0_)
|
|
tolb_ = tol0_ * tol2_
|
|
xthresh_ = 1000 * tol2_
|
|
|
|
CAP_NONE = GeodesicCapability.CAP_NONE
|
|
CAP_C1 = GeodesicCapability.CAP_C1
|
|
CAP_C1p = GeodesicCapability.CAP_C1p
|
|
CAP_C2 = GeodesicCapability.CAP_C2
|
|
CAP_C3 = GeodesicCapability.CAP_C3
|
|
CAP_C4 = GeodesicCapability.CAP_C4
|
|
CAP_ALL = GeodesicCapability.CAP_ALL
|
|
CAP_MASK = GeodesicCapability.CAP_MASK
|
|
OUT_ALL = GeodesicCapability.OUT_ALL
|
|
OUT_MASK = GeodesicCapability.OUT_MASK
|
|
|
|
@staticmethod
|
|
def _SinCosSeries(sinp, sinx, cosx, c):
|
|
"""Private: Evaluate a trig series using Clenshaw summation."""
|
|
# Evaluate
|
|
# y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
|
|
# sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
|
|
# using Clenshaw summation. N.B. c[0] is unused for sin series
|
|
# Approx operation count = (n + 5) mult and (2 * n + 2) add
|
|
k = len(c) # Point to one beyond last element
|
|
n = k - sinp
|
|
ar = 2 * (cosx - sinx) * (cosx + sinx) # 2 * cos(2 * x)
|
|
y1 = 0 # accumulators for sum
|
|
if n & 1:
|
|
k -= 1; y0 = c[k]
|
|
else:
|
|
y0 = 0
|
|
# Now n is even
|
|
n = n // 2
|
|
while n: # while n--:
|
|
n -= 1
|
|
# Unroll loop x 2, so accumulators return to their original role
|
|
k -= 1; y1 = ar * y0 - y1 + c[k]
|
|
k -= 1; y0 = ar * y1 - y0 + c[k]
|
|
return ( 2 * sinx * cosx * y0 if sinp # sin(2 * x) * y0
|
|
else cosx * (y0 - y1) ) # cos(x) * (y0 - y1)
|
|
|
|
@staticmethod
|
|
def _Astroid(x, y):
|
|
"""Private: solve astroid equation."""
|
|
# Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
|
|
# This solution is adapted from Geocentric::Reverse.
|
|
p = Math.sq(x)
|
|
q = Math.sq(y)
|
|
r = (p + q - 1) / 6
|
|
if not(q == 0 and r <= 0):
|
|
# Avoid possible division by zero when r = 0 by multiplying equations
|
|
# for s and t by r^3 and r, resp.
|
|
S = p * q / 4 # S = r^3 * s
|
|
r2 = Math.sq(r)
|
|
r3 = r * r2
|
|
# The discriminant of the quadratic equation for T3. This is zero on
|
|
# the evolute curve p^(1/3)+q^(1/3) = 1
|
|
disc = S * (S + 2 * r3)
|
|
u = r
|
|
if disc >= 0:
|
|
T3 = S + r3
|
|
# Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
|
|
# of precision due to cancellation. The result is unchanged because
|
|
# of the way the T is used in definition of u.
|
|
T3 += -math.sqrt(disc) if T3 < 0 else math.sqrt(disc) # T3 = (r * t)^3
|
|
# N.B. cbrt always returns the real root. cbrt(-8) = -2.
|
|
T = Math.cbrt(T3) # T = r * t
|
|
# T can be zero; but then r2 / T -> 0.
|
|
u += T + (r2 / T if T != 0 else 0)
|
|
else:
|
|
# T is complex, but the way u is defined the result is real.
|
|
ang = math.atan2(math.sqrt(-disc), -(S + r3))
|
|
# There are three possible cube roots. We choose the root which
|
|
# avoids cancellation. Note that disc < 0 implies that r < 0.
|
|
u += 2 * r * math.cos(ang / 3)
|
|
v = math.sqrt(Math.sq(u) + q) # guaranteed positive
|
|
# Avoid loss of accuracy when u < 0.
|
|
uv = q / (v - u) if u < 0 else u + v # u+v, guaranteed positive
|
|
w = (uv - q) / (2 * v) # positive?
|
|
# Rearrange expression for k to avoid loss of accuracy due to
|
|
# subtraction. Division by 0 not possible because uv > 0, w >= 0.
|
|
k = uv / (math.sqrt(uv + Math.sq(w)) + w) # guaranteed positive
|
|
else: # q == 0 && r <= 0
|
|
# y = 0 with |x| <= 1. Handle this case directly.
|
|
# for y small, positive root is k = abs(y)/sqrt(1-x^2)
|
|
k = 0
|
|
return k
|
|
|
|
@staticmethod
|
|
def _A1m1f(eps):
|
|
"""Private: return A1-1."""
|
|
coeff = [
|
|
1, 4, 64, 0, 256,
|
|
]
|
|
m = Geodesic.nA1_//2
|
|
t = Math.polyval(m, coeff, 0, Math.sq(eps)) / coeff[m + 1]
|
|
return (t + eps) / (1 - eps)
|
|
|
|
@staticmethod
|
|
def _C1f(eps, c):
|
|
"""Private: return C1."""
|
|
coeff = [
|
|
-1, 6, -16, 32,
|
|
-9, 64, -128, 2048,
|
|
9, -16, 768,
|
|
3, -5, 512,
|
|
-7, 1280,
|
|
-7, 2048,
|
|
]
|
|
eps2 = Math.sq(eps)
|
|
d = eps
|
|
o = 0
|
|
for l in range(1, Geodesic.nC1_ + 1): # l is index of C1p[l]
|
|
m = (Geodesic.nC1_ - l) // 2 # order of polynomial in eps^2
|
|
c[l] = d * Math.polyval(m, coeff, o, eps2) / coeff[o + m + 1]
|
|
o += m + 2
|
|
d *= eps
|
|
|
|
@staticmethod
|
|
def _C1pf(eps, c):
|
|
"""Private: return C1'"""
|
|
coeff = [
|
|
205, -432, 768, 1536,
|
|
4005, -4736, 3840, 12288,
|
|
-225, 116, 384,
|
|
-7173, 2695, 7680,
|
|
3467, 7680,
|
|
38081, 61440,
|
|
]
|
|
eps2 = Math.sq(eps)
|
|
d = eps
|
|
o = 0
|
|
for l in range(1, Geodesic.nC1p_ + 1): # l is index of C1p[l]
|
|
m = (Geodesic.nC1p_ - l) // 2 # order of polynomial in eps^2
|
|
c[l] = d * Math.polyval(m, coeff, o, eps2) / coeff[o + m + 1]
|
|
o += m + 2
|
|
d *= eps
|
|
|
|
@staticmethod
|
|
def _A2m1f(eps):
|
|
"""Private: return A2-1"""
|
|
coeff = [
|
|
-11, -28, -192, 0, 256,
|
|
]
|
|
m = Geodesic.nA2_//2
|
|
t = Math.polyval(m, coeff, 0, Math.sq(eps)) / coeff[m + 1]
|
|
return (t - eps) / (1 + eps)
|
|
|
|
@staticmethod
|
|
def _C2f(eps, c):
|
|
"""Private: return C2"""
|
|
coeff = [
|
|
1, 2, 16, 32,
|
|
35, 64, 384, 2048,
|
|
15, 80, 768,
|
|
7, 35, 512,
|
|
63, 1280,
|
|
77, 2048,
|
|
]
|
|
eps2 = Math.sq(eps)
|
|
d = eps
|
|
o = 0
|
|
for l in range(1, Geodesic.nC2_ + 1): # l is index of C2[l]
|
|
m = (Geodesic.nC2_ - l) // 2 # order of polynomial in eps^2
|
|
c[l] = d * Math.polyval(m, coeff, o, eps2) / coeff[o + m + 1]
|
|
o += m + 2
|
|
d *= eps
|
|
|
|
def __init__(self, a, f):
|
|
"""Construct a Geodesic object
|
|
|
|
:param a: the equatorial radius of the ellipsoid in meters
|
|
:param f: the flattening of the ellipsoid
|
|
|
|
An exception is thrown if *a* or the polar semi-axis *b* = *a* (1 -
|
|
*f*) is not a finite positive quantity.
|
|
|
|
"""
|
|
|
|
self.a = float(a)
|
|
"""The equatorial radius in meters (readonly)"""
|
|
self.f = float(f)
|
|
"""The flattening (readonly)"""
|
|
self._f1 = 1 - self.f
|
|
self._e2 = self.f * (2 - self.f)
|
|
self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
|
|
self._n = self.f / ( 2 - self.f)
|
|
self._b = self.a * self._f1
|
|
# authalic radius squared
|
|
self._c2 = (Math.sq(self.a) + Math.sq(self._b) *
|
|
(1 if self._e2 == 0 else
|
|
(math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else
|
|
math.atan(math.sqrt(-self._e2))) /
|
|
math.sqrt(abs(self._e2))))/2
|
|
# The sig12 threshold for "really short". Using the auxiliary sphere
|
|
# solution with dnm computed at (bet1 + bet2) / 2, the relative error in
|
|
# the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
|
|
# (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given
|
|
# f and sig12, the max error occurs for lines near the pole. If the old
|
|
# rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
|
|
# by a factor of 2.) Setting this equal to epsilon gives sig12 = etol2.
|
|
# Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
|
|
# abs(f)) stops etol2 getting too large in the nearly spherical case.
|
|
self._etol2 = 0.1 * Geodesic.tol2_ / math.sqrt( max(0.001, abs(self.f)) *
|
|
min(1.0, 1-self.f/2) / 2 )
|
|
if not(math.isfinite(self.a) and self.a > 0):
|
|
raise ValueError("Equatorial radius is not positive")
|
|
if not(math.isfinite(self._b) and self._b > 0):
|
|
raise ValueError("Polar semi-axis is not positive")
|
|
self._A3x = list(range(Geodesic.nA3x_))
|
|
self._C3x = list(range(Geodesic.nC3x_))
|
|
self._C4x = list(range(Geodesic.nC4x_))
|
|
self._A3coeff()
|
|
self._C3coeff()
|
|
self._C4coeff()
|
|
|
|
def _A3coeff(self):
|
|
"""Private: return coefficients for A3"""
|
|
coeff = [
|
|
-3, 128,
|
|
-2, -3, 64,
|
|
-1, -3, -1, 16,
|
|
3, -1, -2, 8,
|
|
1, -1, 2,
|
|
1, 1,
|
|
]
|
|
o = 0; k = 0
|
|
for j in range(Geodesic.nA3_ - 1, -1, -1): # coeff of eps^j
|
|
m = min(Geodesic.nA3_ - j - 1, j) # order of polynomial in n
|
|
self._A3x[k] = Math.polyval(m, coeff, o, self._n) / coeff[o + m + 1]
|
|
k += 1
|
|
o += m + 2
|
|
|
|
def _C3coeff(self):
|
|
"""Private: return coefficients for C3"""
|
|
coeff = [
|
|
3, 128,
|
|
2, 5, 128,
|
|
-1, 3, 3, 64,
|
|
-1, 0, 1, 8,
|
|
-1, 1, 4,
|
|
5, 256,
|
|
1, 3, 128,
|
|
-3, -2, 3, 64,
|
|
1, -3, 2, 32,
|
|
7, 512,
|
|
-10, 9, 384,
|
|
5, -9, 5, 192,
|
|
7, 512,
|
|
-14, 7, 512,
|
|
21, 2560,
|
|
]
|
|
o = 0; k = 0
|
|
for l in range(1, Geodesic.nC3_): # l is index of C3[l]
|
|
for j in range(Geodesic.nC3_ - 1, l - 1, -1): # coeff of eps^j
|
|
m = min(Geodesic.nC3_ - j - 1, j) # order of polynomial in n
|
|
self._C3x[k] = Math.polyval(m, coeff, o, self._n) / coeff[o + m + 1]
|
|
k += 1
|
|
o += m + 2
|
|
|
|
def _C4coeff(self):
|
|
"""Private: return coefficients for C4"""
|
|
coeff = [
|
|
97, 15015,
|
|
1088, 156, 45045,
|
|
-224, -4784, 1573, 45045,
|
|
-10656, 14144, -4576, -858, 45045,
|
|
64, 624, -4576, 6864, -3003, 15015,
|
|
100, 208, 572, 3432, -12012, 30030, 45045,
|
|
1, 9009,
|
|
-2944, 468, 135135,
|
|
5792, 1040, -1287, 135135,
|
|
5952, -11648, 9152, -2574, 135135,
|
|
-64, -624, 4576, -6864, 3003, 135135,
|
|
8, 10725,
|
|
1856, -936, 225225,
|
|
-8448, 4992, -1144, 225225,
|
|
-1440, 4160, -4576, 1716, 225225,
|
|
-136, 63063,
|
|
1024, -208, 105105,
|
|
3584, -3328, 1144, 315315,
|
|
-128, 135135,
|
|
-2560, 832, 405405,
|
|
128, 99099,
|
|
]
|
|
o = 0; k = 0
|
|
for l in range(Geodesic.nC4_): # l is index of C4[l]
|
|
for j in range(Geodesic.nC4_ - 1, l - 1, -1): # coeff of eps^j
|
|
m = Geodesic.nC4_ - j - 1 # order of polynomial in n
|
|
self._C4x[k] = Math.polyval(m, coeff, o, self._n) / coeff[o + m + 1]
|
|
k += 1
|
|
o += m + 2
|
|
|
|
def _A3f(self, eps):
|
|
"""Private: return A3"""
|
|
# Evaluate A3
|
|
return Math.polyval(Geodesic.nA3_ - 1, self._A3x, 0, eps)
|
|
|
|
def _C3f(self, eps, c):
|
|
"""Private: return C3"""
|
|
# Evaluate C3
|
|
# Elements c[1] thru c[nC3_ - 1] are set
|
|
mult = 1
|
|
o = 0
|
|
for l in range(1, Geodesic.nC3_): # l is index of C3[l]
|
|
m = Geodesic.nC3_ - l - 1 # order of polynomial in eps
|
|
mult *= eps
|
|
c[l] = mult * Math.polyval(m, self._C3x, o, eps)
|
|
o += m + 1
|
|
|
|
def _C4f(self, eps, c):
|
|
"""Private: return C4"""
|
|
# Evaluate C4 coeffs by Horner's method
|
|
# Elements c[0] thru c[nC4_ - 1] are set
|
|
mult = 1
|
|
o = 0
|
|
for l in range(Geodesic.nC4_): # l is index of C4[l]
|
|
m = Geodesic.nC4_ - l - 1 # order of polynomial in eps
|
|
c[l] = mult * Math.polyval(m, self._C4x, o, eps)
|
|
o += m + 1
|
|
mult *= eps
|
|
|
|
# return s12b, m12b, m0, M12, M21
|
|
def _Lengths(self, eps, sig12,
|
|
ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, outmask,
|
|
# Scratch areas of the right size
|
|
C1a, C2a):
|
|
"""Private: return a bunch of lengths"""
|
|
# Return s12b, m12b, m0, M12, M21, where
|
|
# m12b = (reduced length)/_b; s12b = distance/_b,
|
|
# m0 = coefficient of secular term in expression for reduced length.
|
|
outmask &= Geodesic.OUT_MASK
|
|
# outmask & DISTANCE: set s12b
|
|
# outmask & REDUCEDLENGTH: set m12b & m0
|
|
# outmask & GEODESICSCALE: set M12 & M21
|
|
|
|
s12b = m12b = m0 = M12 = M21 = math.nan
|
|
if outmask & (Geodesic.DISTANCE | Geodesic.REDUCEDLENGTH |
|
|
Geodesic.GEODESICSCALE):
|
|
A1 = Geodesic._A1m1f(eps)
|
|
Geodesic._C1f(eps, C1a)
|
|
if outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
|
|
A2 = Geodesic._A2m1f(eps)
|
|
Geodesic._C2f(eps, C2a)
|
|
m0x = A1 - A2
|
|
A2 = 1 + A2
|
|
A1 = 1 + A1
|
|
if outmask & Geodesic.DISTANCE:
|
|
B1 = (Geodesic._SinCosSeries(True, ssig2, csig2, C1a) -
|
|
Geodesic._SinCosSeries(True, ssig1, csig1, C1a))
|
|
# Missing a factor of _b
|
|
s12b = A1 * (sig12 + B1)
|
|
if outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
|
|
B2 = (Geodesic._SinCosSeries(True, ssig2, csig2, C2a) -
|
|
Geodesic._SinCosSeries(True, ssig1, csig1, C2a))
|
|
J12 = m0x * sig12 + (A1 * B1 - A2 * B2)
|
|
elif outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
|
|
# Assume here that nC1_ >= nC2_
|
|
for l in range(1, Geodesic.nC2_):
|
|
C2a[l] = A1 * C1a[l] - A2 * C2a[l]
|
|
J12 = m0x * sig12 + (Geodesic._SinCosSeries(True, ssig2, csig2, C2a) -
|
|
Geodesic._SinCosSeries(True, ssig1, csig1, C2a))
|
|
if outmask & Geodesic.REDUCEDLENGTH:
|
|
m0 = m0x
|
|
# Missing a factor of _b.
|
|
# Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
|
|
# accurate cancellation in the case of coincident points.
|
|
m12b = (dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
|
|
csig1 * csig2 * J12)
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
csig12 = csig1 * csig2 + ssig1 * ssig2
|
|
t = self._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2)
|
|
M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1
|
|
M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2
|
|
return s12b, m12b, m0, M12, M21
|
|
|
|
# return sig12, salp1, calp1, salp2, calp2, dnm
|
|
def _InverseStart(self, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
|
|
lam12, slam12, clam12,
|
|
# Scratch areas of the right size
|
|
C1a, C2a):
|
|
"""Private: Find a starting value for Newton's method."""
|
|
# Return a starting point for Newton's method in salp1 and calp1 (function
|
|
# value is -1). If Newton's method doesn't need to be used, return also
|
|
# salp2 and calp2 and function value is sig12.
|
|
sig12 = -1; salp2 = calp2 = dnm = math.nan # Return values
|
|
# bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
|
|
sbet12 = sbet2 * cbet1 - cbet2 * sbet1
|
|
cbet12 = cbet2 * cbet1 + sbet2 * sbet1
|
|
# Volatile declaration needed to fix inverse cases
|
|
# 88.202499451857 0 -88.202499451857 179.981022032992859592
|
|
# 89.262080389218 0 -89.262080389218 179.992207982775375662
|
|
# 89.333123580033 0 -89.333123580032997687 179.99295812360148422
|
|
# which otherwise fail with g++ 4.4.4 x86 -O3
|
|
sbet12a = sbet2 * cbet1
|
|
sbet12a += cbet2 * sbet1
|
|
|
|
shortline = cbet12 >= 0 and sbet12 < 0.5 and cbet2 * lam12 < 0.5
|
|
if shortline:
|
|
sbetm2 = Math.sq(sbet1 + sbet2)
|
|
# sin((bet1+bet2)/2)^2
|
|
# = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
|
|
sbetm2 /= sbetm2 + Math.sq(cbet1 + cbet2)
|
|
dnm = math.sqrt(1 + self._ep2 * sbetm2)
|
|
omg12 = lam12 / (self._f1 * dnm)
|
|
somg12 = math.sin(omg12); comg12 = math.cos(omg12)
|
|
else:
|
|
somg12 = slam12; comg12 = clam12
|
|
|
|
salp1 = cbet2 * somg12
|
|
calp1 = (
|
|
sbet12 + cbet2 * sbet1 * Math.sq(somg12) / (1 + comg12) if comg12 >= 0
|
|
else sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12))
|
|
|
|
ssig12 = math.hypot(salp1, calp1)
|
|
csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12
|
|
|
|
if shortline and ssig12 < self._etol2:
|
|
# really short lines
|
|
salp2 = cbet1 * somg12
|
|
calp2 = sbet12 - cbet1 * sbet2 * (Math.sq(somg12) / (1 + comg12)
|
|
if comg12 >= 0 else 1 - comg12)
|
|
salp2, calp2 = Math.norm(salp2, calp2)
|
|
# Set return value
|
|
sig12 = math.atan2(ssig12, csig12)
|
|
elif (abs(self._n) >= 0.1 or # Skip astroid calc if too eccentric
|
|
csig12 >= 0 or
|
|
ssig12 >= 6 * abs(self._n) * math.pi * Math.sq(cbet1)):
|
|
# Nothing to do, zeroth order spherical approximation is OK
|
|
pass
|
|
else:
|
|
# Scale lam12 and bet2 to x, y coordinate system where antipodal point
|
|
# is at origin and singular point is at y = 0, x = -1.
|
|
# real y, lamscale, betscale
|
|
lam12x = math.atan2(-slam12, -clam12)
|
|
if self.f >= 0: # In fact f == 0 does not get here
|
|
# x = dlong, y = dlat
|
|
k2 = Math.sq(sbet1) * self._ep2
|
|
eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
|
|
lamscale = self.f * cbet1 * self._A3f(eps) * math.pi
|
|
betscale = lamscale * cbet1
|
|
x = lam12x / lamscale
|
|
y = sbet12a / betscale
|
|
else: # _f < 0
|
|
# x = dlat, y = dlong
|
|
cbet12a = cbet2 * cbet1 - sbet2 * sbet1
|
|
bet12a = math.atan2(sbet12a, cbet12a)
|
|
# real m12b, m0, dummy
|
|
# In the case of lon12 = 180, this repeats a calculation made in
|
|
# Inverse.
|
|
dummy, m12b, m0, dummy, dummy = self._Lengths(
|
|
self._n, math.pi + bet12a, sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
|
|
cbet1, cbet2, Geodesic.REDUCEDLENGTH, C1a, C2a)
|
|
x = -1 + m12b / (cbet1 * cbet2 * m0 * math.pi)
|
|
betscale = (sbet12a / x if x < -0.01
|
|
else -self.f * Math.sq(cbet1) * math.pi)
|
|
lamscale = betscale / cbet1
|
|
y = lam12x / lamscale
|
|
|
|
if y > -Geodesic.tol1_ and x > -1 - Geodesic.xthresh_:
|
|
# strip near cut
|
|
if self.f >= 0:
|
|
salp1 = min(1.0, -x); calp1 = - math.sqrt(1 - Math.sq(salp1))
|
|
else:
|
|
calp1 = max((0.0 if x > -Geodesic.tol1_ else -1.0), x)
|
|
salp1 = math.sqrt(1 - Math.sq(calp1))
|
|
else:
|
|
# Estimate alp1, by solving the astroid problem.
|
|
#
|
|
# Could estimate alpha1 = theta + pi/2, directly, i.e.,
|
|
# calp1 = y/k; salp1 = -x/(1+k); for _f >= 0
|
|
# calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check)
|
|
#
|
|
# However, it's better to estimate omg12 from astroid and use
|
|
# spherical formula to compute alp1. This reduces the mean number of
|
|
# Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
|
|
# (min 0 max 5). The changes in the number of iterations are as
|
|
# follows:
|
|
#
|
|
# change percent
|
|
# 1 5
|
|
# 0 78
|
|
# -1 16
|
|
# -2 0.6
|
|
# -3 0.04
|
|
# -4 0.002
|
|
#
|
|
# The histogram of iterations is (m = number of iterations estimating
|
|
# alp1 directly, n = number of iterations estimating via omg12, total
|
|
# number of trials = 148605):
|
|
#
|
|
# iter m n
|
|
# 0 148 186
|
|
# 1 13046 13845
|
|
# 2 93315 102225
|
|
# 3 36189 32341
|
|
# 4 5396 7
|
|
# 5 455 1
|
|
# 6 56 0
|
|
#
|
|
# Because omg12 is near pi, estimate work with omg12a = pi - omg12
|
|
k = Geodesic._Astroid(x, y)
|
|
omg12a = lamscale * ( -x * k/(1 + k) if self.f >= 0
|
|
else -y * (1 + k)/k )
|
|
somg12 = math.sin(omg12a); comg12 = -math.cos(omg12a)
|
|
# Update spherical estimate of alp1 using omg12 instead of lam12
|
|
salp1 = cbet2 * somg12
|
|
calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12)
|
|
# Sanity check on starting guess. Backwards check allows NaN through.
|
|
if not (salp1 <= 0):
|
|
salp1, calp1 = Math.norm(salp1, calp1)
|
|
else:
|
|
salp1 = 1; calp1 = 0
|
|
return sig12, salp1, calp1, salp2, calp2, dnm
|
|
|
|
# return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
|
|
# domg12, dlam12
|
|
def _Lambda12(self, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
|
|
slam120, clam120, diffp,
|
|
# Scratch areas of the right size
|
|
C1a, C2a, C3a):
|
|
"""Private: Solve hybrid problem"""
|
|
if sbet1 == 0 and calp1 == 0:
|
|
# Break degeneracy of equatorial line. This case has already been
|
|
# handled.
|
|
calp1 = -Geodesic.tiny_
|
|
|
|
# sin(alp1) * cos(bet1) = sin(alp0)
|
|
salp0 = salp1 * cbet1
|
|
calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0
|
|
|
|
# real somg1, comg1, somg2, comg2, lam12
|
|
# tan(bet1) = tan(sig1) * cos(alp1)
|
|
# tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
|
|
ssig1 = sbet1; somg1 = salp0 * sbet1
|
|
csig1 = comg1 = calp1 * cbet1
|
|
ssig1, csig1 = Math.norm(ssig1, csig1)
|
|
# Math.norm(somg1, comg1); -- don't need to normalize!
|
|
|
|
# Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
|
|
# about this case, since this can yield singularities in the Newton
|
|
# iteration.
|
|
# sin(alp2) * cos(bet2) = sin(alp0)
|
|
salp2 = salp0 / cbet2 if cbet2 != cbet1 else salp1
|
|
# calp2 = sqrt(1 - sq(salp2))
|
|
# = sqrt(sq(calp0) - sq(sbet2)) / cbet2
|
|
# and subst for calp0 and rearrange to give (choose positive sqrt
|
|
# to give alp2 in [0, pi/2]).
|
|
calp2 = (math.sqrt(Math.sq(calp1 * cbet1) +
|
|
((cbet2 - cbet1) * (cbet1 + cbet2) if cbet1 < -sbet1
|
|
else (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2
|
|
if cbet2 != cbet1 or abs(sbet2) != -sbet1 else abs(calp1))
|
|
# tan(bet2) = tan(sig2) * cos(alp2)
|
|
# tan(omg2) = sin(alp0) * tan(sig2).
|
|
ssig2 = sbet2; somg2 = salp0 * sbet2
|
|
csig2 = comg2 = calp2 * cbet2
|
|
ssig2, csig2 = Math.norm(ssig2, csig2)
|
|
# Math.norm(somg2, comg2); -- don't need to normalize!
|
|
|
|
# sig12 = sig2 - sig1, limit to [0, pi]
|
|
sig12 = math.atan2(max(0.0, csig1 * ssig2 - ssig1 * csig2) + 0.0,
|
|
csig1 * csig2 + ssig1 * ssig2)
|
|
|
|
# omg12 = omg2 - omg1, limit to [0, pi]
|
|
somg12 = max(0.0, comg1 * somg2 - somg1 * comg2) + 0.0
|
|
comg12 = comg1 * comg2 + somg1 * somg2
|
|
# eta = omg12 - lam120
|
|
eta = math.atan2(somg12 * clam120 - comg12 * slam120,
|
|
comg12 * clam120 + somg12 * slam120)
|
|
|
|
# real B312
|
|
k2 = Math.sq(calp0) * self._ep2
|
|
eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
|
|
self._C3f(eps, C3a)
|
|
B312 = (Geodesic._SinCosSeries(True, ssig2, csig2, C3a) -
|
|
Geodesic._SinCosSeries(True, ssig1, csig1, C3a))
|
|
domg12 = -self.f * self._A3f(eps) * salp0 * (sig12 + B312)
|
|
lam12 = eta + domg12
|
|
|
|
if diffp:
|
|
if calp2 == 0:
|
|
dlam12 = - 2 * self._f1 * dn1 / sbet1
|
|
else:
|
|
dummy, dlam12, dummy, dummy, dummy = self._Lengths(
|
|
eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
|
|
Geodesic.REDUCEDLENGTH, C1a, C2a)
|
|
dlam12 *= self._f1 / (calp2 * cbet2)
|
|
else:
|
|
dlam12 = math.nan
|
|
|
|
return (lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
|
|
domg12, dlam12)
|
|
|
|
# return a12, s12, salp1, calp1, salp2, calp2, m12, M12, M21, S12
|
|
def _GenInverse(self, lat1, lon1, lat2, lon2, outmask):
|
|
"""Private: General version of the inverse problem"""
|
|
a12 = s12 = m12 = M12 = M21 = S12 = math.nan # return vals
|
|
|
|
outmask &= Geodesic.OUT_MASK
|
|
# Compute longitude difference (AngDiff does this carefully). Result is
|
|
# in [-180, 180] but -180 is only for west-going geodesics. 180 is for
|
|
# east-going and meridional geodesics.
|
|
lon12, lon12s = Math.AngDiff(lon1, lon2)
|
|
# Make longitude difference positive.
|
|
lonsign = math.copysign(1, lon12)
|
|
lon12 = lonsign * lon12; lon12s = lonsign * lon12s
|
|
lam12 = math.radians(lon12)
|
|
# Calculate sincos of lon12 + error (this applies AngRound internally).
|
|
slam12, clam12 = Math.sincosde(lon12, lon12s)
|
|
lon12s = (180 - lon12) - lon12s # the supplementary longitude difference
|
|
|
|
# If really close to the equator, treat as on equator.
|
|
lat1 = Math.AngRound(Math.LatFix(lat1))
|
|
lat2 = Math.AngRound(Math.LatFix(lat2))
|
|
# Swap points so that point with higher (abs) latitude is point 1
|
|
# If one latitude is a nan, then it becomes lat1.
|
|
swapp = -1 if abs(lat1) < abs(lat2) or math.isnan(lat2) else 1
|
|
if swapp < 0:
|
|
lonsign *= -1
|
|
lat2, lat1 = lat1, lat2
|
|
# Make lat1 <= 0
|
|
latsign = math.copysign(1, -lat1)
|
|
lat1 *= latsign
|
|
lat2 *= latsign
|
|
# Now we have
|
|
#
|
|
# 0 <= lon12 <= 180
|
|
# -90 <= lat1 <= 0
|
|
# lat1 <= lat2 <= -lat1
|
|
#
|
|
# longsign, swapp, latsign register the transformation to bring the
|
|
# coordinates to this canonical form. In all cases, 1 means no change was
|
|
# made. We make these transformations so that there are few cases to
|
|
# check, e.g., on verifying quadrants in atan2. In addition, this
|
|
# enforces some symmetries in the results returned.
|
|
|
|
# real phi, sbet1, cbet1, sbet2, cbet2, s12x, m12x
|
|
|
|
sbet1, cbet1 = Math.sincosd(lat1); sbet1 *= self._f1
|
|
# Ensure cbet1 = +epsilon at poles
|
|
sbet1, cbet1 = Math.norm(sbet1, cbet1); cbet1 = max(Geodesic.tiny_, cbet1)
|
|
|
|
sbet2, cbet2 = Math.sincosd(lat2); sbet2 *= self._f1
|
|
# Ensure cbet2 = +epsilon at poles
|
|
sbet2, cbet2 = Math.norm(sbet2, cbet2); cbet2 = max(Geodesic.tiny_, cbet2)
|
|
|
|
# If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
|
|
# |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
|
|
# a better measure. This logic is used in assigning calp2 in Lambda12.
|
|
# Sometimes these quantities vanish and in that case we force bet2 = +/-
|
|
# bet1 exactly. An example where is is necessary is the inverse problem
|
|
# 48.522876735459 0 -48.52287673545898293 179.599720456223079643
|
|
# which failed with Visual Studio 10 (Release and Debug)
|
|
|
|
if cbet1 < -sbet1:
|
|
if cbet2 == cbet1:
|
|
sbet2 = math.copysign(sbet1, sbet2)
|
|
else:
|
|
if abs(sbet2) == -sbet1:
|
|
cbet2 = cbet1
|
|
|
|
dn1 = math.sqrt(1 + self._ep2 * Math.sq(sbet1))
|
|
dn2 = math.sqrt(1 + self._ep2 * Math.sq(sbet2))
|
|
|
|
# real a12, sig12, calp1, salp1, calp2, salp2
|
|
# index zero elements of these arrays are unused
|
|
C1a = list(range(Geodesic.nC1_ + 1))
|
|
C2a = list(range(Geodesic.nC2_ + 1))
|
|
C3a = list(range(Geodesic.nC3_))
|
|
|
|
meridian = lat1 == -90 or slam12 == 0
|
|
|
|
if meridian:
|
|
|
|
# Endpoints are on a single full meridian, so the geodesic might lie on
|
|
# a meridian.
|
|
|
|
calp1 = clam12; salp1 = slam12 # Head to the target longitude
|
|
calp2 = 1.0; salp2 = 0.0 # At the target we're heading north
|
|
|
|
# tan(bet) = tan(sig) * cos(alp)
|
|
ssig1 = sbet1; csig1 = calp1 * cbet1
|
|
ssig2 = sbet2; csig2 = calp2 * cbet2
|
|
|
|
# sig12 = sig2 - sig1
|
|
sig12 = math.atan2(max(0.0, csig1 * ssig2 - ssig1 * csig2) + 0.0,
|
|
csig1 * csig2 + ssig1 * ssig2)
|
|
|
|
s12x, m12x, dummy, M12, M21 = self._Lengths(
|
|
self._n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
|
|
outmask | Geodesic.DISTANCE | Geodesic.REDUCEDLENGTH, C1a, C2a)
|
|
|
|
# Add the check for sig12 since zero length geodesics might yield m12 <
|
|
# 0. Test case was
|
|
#
|
|
# echo 20.001 0 20.001 0 | GeodSolve -i
|
|
#
|
|
# In fact, we will have sig12 > pi/2 for meridional geodesic which is
|
|
# not a shortest path.
|
|
if sig12 < 1 or m12x >= 0:
|
|
if (sig12 < 3 * Geodesic.tiny_ or
|
|
# Prevent negative s12 or m12 for short lines
|
|
(sig12 < Geodesic.tol0_ and (s12x < 0 or m12x < 0))):
|
|
sig12 = m12x = s12x = 0.0
|
|
m12x *= self._b
|
|
s12x *= self._b
|
|
a12 = math.degrees(sig12)
|
|
else:
|
|
# m12 < 0, i.e., prolate and too close to anti-podal
|
|
meridian = False
|
|
# end if meridian:
|
|
|
|
# somg12 == 2 marks that it needs to be calculated
|
|
somg12 = 2.0; comg12 = 0.0; omg12 = 0.0
|
|
if (not meridian and
|
|
sbet1 == 0 and # and sbet2 == 0
|
|
# Mimic the way Lambda12 works with calp1 = 0
|
|
(self.f <= 0 or lon12s >= self.f * 180)):
|
|
|
|
# Geodesic runs along equator
|
|
calp1 = calp2 = 0.0; salp1 = salp2 = 1.0
|
|
s12x = self.a * lam12
|
|
sig12 = omg12 = lam12 / self._f1
|
|
m12x = self._b * math.sin(sig12)
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
M12 = M21 = math.cos(sig12)
|
|
a12 = lon12 / self._f1
|
|
|
|
elif not meridian:
|
|
|
|
# Now point1 and point2 belong within a hemisphere bounded by a
|
|
# meridian and geodesic is neither meridional or equatorial.
|
|
|
|
# Figure a starting point for Newton's method
|
|
sig12, salp1, calp1, salp2, calp2, dnm = self._InverseStart(
|
|
sbet1, cbet1, dn1, sbet2, cbet2, dn2, lam12, slam12, clam12, C1a, C2a)
|
|
|
|
if sig12 >= 0:
|
|
# Short lines (InverseStart sets salp2, calp2, dnm)
|
|
s12x = sig12 * self._b * dnm
|
|
m12x = (Math.sq(dnm) * self._b * math.sin(sig12 / dnm))
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
M12 = M21 = math.cos(sig12 / dnm)
|
|
a12 = math.degrees(sig12)
|
|
omg12 = lam12 / (self._f1 * dnm)
|
|
else:
|
|
|
|
# Newton's method. This is a straightforward solution of f(alp1) =
|
|
# lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
|
|
# root in the interval (0, pi) and its derivative is positive at the
|
|
# root. Thus f(alp) is positive for alp > alp1 and negative for alp <
|
|
# alp1. During the course of the iteration, a range (alp1a, alp1b) is
|
|
# maintained which brackets the root and with each evaluation of f(alp)
|
|
# the range is shrunk if possible. Newton's method is restarted
|
|
# whenever the derivative of f is negative (because the new value of
|
|
# alp1 is then further from the solution) or if the new estimate of
|
|
# alp1 lies outside (0,pi); in this case, the new starting guess is
|
|
# taken to be (alp1a + alp1b) / 2.
|
|
# real ssig1, csig1, ssig2, csig2, eps
|
|
numit = 0
|
|
tripn = tripb = False
|
|
# Bracketing range
|
|
salp1a = Geodesic.tiny_; calp1a = 1.0
|
|
salp1b = Geodesic.tiny_; calp1b = -1.0
|
|
|
|
while numit < Geodesic.maxit2_:
|
|
# the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
|
|
# WGS84 and random input: mean = 2.85, sd = 0.60
|
|
(v, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
|
|
eps, domg12, dv) = self._Lambda12(
|
|
sbet1, cbet1, dn1, sbet2, cbet2, dn2,
|
|
salp1, calp1, slam12, clam12, numit < Geodesic.maxit1_,
|
|
C1a, C2a, C3a)
|
|
# Reversed test to allow escape with NaNs
|
|
if tripb or not (abs(v) >= (8 if tripn else 1) * Geodesic.tol0_):
|
|
break
|
|
# Update bracketing values
|
|
if v > 0 and (numit > Geodesic.maxit1_ or
|
|
calp1/salp1 > calp1b/salp1b):
|
|
salp1b = salp1; calp1b = calp1
|
|
elif v < 0 and (numit > Geodesic.maxit1_ or
|
|
calp1/salp1 < calp1a/salp1a):
|
|
salp1a = salp1; calp1a = calp1
|
|
|
|
numit += 1
|
|
if numit < Geodesic.maxit1_ and dv > 0:
|
|
dalp1 = -v/dv
|
|
sdalp1 = math.sin(dalp1); cdalp1 = math.cos(dalp1)
|
|
nsalp1 = salp1 * cdalp1 + calp1 * sdalp1
|
|
if nsalp1 > 0 and abs(dalp1) < math.pi:
|
|
calp1 = calp1 * cdalp1 - salp1 * sdalp1
|
|
salp1 = nsalp1
|
|
salp1, calp1 = Math.norm(salp1, calp1)
|
|
# In some regimes we don't get quadratic convergence because
|
|
# slope -> 0. So use convergence conditions based on epsilon
|
|
# instead of sqrt(epsilon).
|
|
tripn = abs(v) <= 16 * Geodesic.tol0_
|
|
continue
|
|
# Either dv was not positive or updated value was outside
|
|
# legal range. Use the midpoint of the bracket as the next
|
|
# estimate. This mechanism is not needed for the WGS84
|
|
# ellipsoid, but it does catch problems with more eccentric
|
|
# ellipsoids. Its efficacy is such for
|
|
# the WGS84 test set with the starting guess set to alp1 = 90deg:
|
|
# the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
|
|
# WGS84 and random input: mean = 4.74, sd = 0.99
|
|
salp1 = (salp1a + salp1b)/2
|
|
calp1 = (calp1a + calp1b)/2
|
|
salp1, calp1 = Math.norm(salp1, calp1)
|
|
tripn = False
|
|
tripb = (abs(salp1a - salp1) + (calp1a - calp1) < Geodesic.tolb_ or
|
|
abs(salp1 - salp1b) + (calp1 - calp1b) < Geodesic.tolb_)
|
|
|
|
lengthmask = (outmask |
|
|
(Geodesic.DISTANCE
|
|
if (outmask & (Geodesic.REDUCEDLENGTH |
|
|
Geodesic.GEODESICSCALE))
|
|
else Geodesic.EMPTY))
|
|
s12x, m12x, dummy, M12, M21 = self._Lengths(
|
|
eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
|
|
lengthmask, C1a, C2a)
|
|
|
|
m12x *= self._b
|
|
s12x *= self._b
|
|
a12 = math.degrees(sig12)
|
|
if outmask & Geodesic.AREA:
|
|
# omg12 = lam12 - domg12
|
|
sdomg12 = math.sin(domg12); cdomg12 = math.cos(domg12)
|
|
somg12 = slam12 * cdomg12 - clam12 * sdomg12
|
|
comg12 = clam12 * cdomg12 + slam12 * sdomg12
|
|
|
|
# end elif not meridian
|
|
|
|
if outmask & Geodesic.DISTANCE:
|
|
s12 = 0.0 + s12x # Convert -0 to 0
|
|
|
|
if outmask & Geodesic.REDUCEDLENGTH:
|
|
m12 = 0.0 + m12x # Convert -0 to 0
|
|
|
|
if outmask & Geodesic.AREA:
|
|
# From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
|
|
salp0 = salp1 * cbet1
|
|
calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0
|
|
# real alp12
|
|
if calp0 != 0 and salp0 != 0:
|
|
# From Lambda12: tan(bet) = tan(sig) * cos(alp)
|
|
ssig1 = sbet1; csig1 = calp1 * cbet1
|
|
ssig2 = sbet2; csig2 = calp2 * cbet2
|
|
k2 = Math.sq(calp0) * self._ep2
|
|
eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
|
|
# Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
|
|
A4 = Math.sq(self.a) * calp0 * salp0 * self._e2
|
|
ssig1, csig1 = Math.norm(ssig1, csig1)
|
|
ssig2, csig2 = Math.norm(ssig2, csig2)
|
|
C4a = list(range(Geodesic.nC4_))
|
|
self._C4f(eps, C4a)
|
|
B41 = Geodesic._SinCosSeries(False, ssig1, csig1, C4a)
|
|
B42 = Geodesic._SinCosSeries(False, ssig2, csig2, C4a)
|
|
S12 = A4 * (B42 - B41)
|
|
else:
|
|
# Avoid problems with indeterminate sig1, sig2 on equator
|
|
S12 = 0.0
|
|
|
|
if not meridian and somg12 == 2.0:
|
|
somg12 = math.sin(omg12); comg12 = math.cos(omg12)
|
|
|
|
if (not meridian and
|
|
# omg12 < 3/4 * pi
|
|
comg12 > -0.7071 and # Long difference not too big
|
|
sbet2 - sbet1 < 1.75): # Lat difference not too big
|
|
# Use tan(Gamma/2) = tan(omg12/2)
|
|
# * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
|
|
# with tan(x/2) = sin(x)/(1+cos(x))
|
|
domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2
|
|
alp12 = 2 * math.atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
|
|
domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) )
|
|
else:
|
|
# alp12 = alp2 - alp1, used in atan2 so no need to normalize
|
|
salp12 = salp2 * calp1 - calp2 * salp1
|
|
calp12 = calp2 * calp1 + salp2 * salp1
|
|
# The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
|
|
# salp12 = -0 and alp12 = -180. However this depends on the sign
|
|
# being attached to 0 correctly. The following ensures the correct
|
|
# behavior.
|
|
if salp12 == 0 and calp12 < 0:
|
|
salp12 = Geodesic.tiny_ * calp1
|
|
calp12 = -1.0
|
|
alp12 = math.atan2(salp12, calp12)
|
|
S12 += self._c2 * alp12
|
|
S12 *= swapp * lonsign * latsign
|
|
# Convert -0 to 0
|
|
S12 += 0.0
|
|
|
|
# Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
|
|
if swapp < 0:
|
|
salp2, salp1 = salp1, salp2
|
|
calp2, calp1 = calp1, calp2
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
M21, M12 = M12, M21
|
|
|
|
salp1 *= swapp * lonsign; calp1 *= swapp * latsign
|
|
salp2 *= swapp * lonsign; calp2 *= swapp * latsign
|
|
|
|
return a12, s12, salp1, calp1, salp2, calp2, m12, M12, M21, S12
|
|
|
|
def Inverse(self, lat1, lon1, lat2, lon2,
|
|
outmask = GeodesicCapability.STANDARD):
|
|
"""Solve the inverse geodesic problem
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param lat2: latitude of the second point in degrees
|
|
:param lon2: longitude of the second point in degrees
|
|
:param outmask: the :ref:`output mask <outmask>`
|
|
:return: a :ref:`dict`
|
|
|
|
Compute geodesic between (*lat1*, *lon1*) and (*lat2*, *lon2*).
|
|
The default value of *outmask* is STANDARD, i.e., the *lat1*,
|
|
*lon1*, *azi1*, *lat2*, *lon2*, *azi2*, *s12*, *a12* entries are
|
|
returned.
|
|
|
|
"""
|
|
|
|
a12, s12, salp1,calp1, salp2,calp2, m12, M12, M21, S12 = self._GenInverse(
|
|
lat1, lon1, lat2, lon2, outmask)
|
|
outmask &= Geodesic.OUT_MASK
|
|
if outmask & Geodesic.LONG_UNROLL:
|
|
lon12, e = Math.AngDiff(lon1, lon2)
|
|
lon2 = (lon1 + lon12) + e
|
|
else:
|
|
lon2 = Math.AngNormalize(lon2)
|
|
result = {'lat1': Math.LatFix(lat1),
|
|
'lon1': lon1 if outmask & Geodesic.LONG_UNROLL else
|
|
Math.AngNormalize(lon1),
|
|
'lat2': Math.LatFix(lat2),
|
|
'lon2': lon2}
|
|
result['a12'] = a12
|
|
if outmask & Geodesic.DISTANCE: result['s12'] = s12
|
|
if outmask & Geodesic.AZIMUTH:
|
|
result['azi1'] = Math.atan2d(salp1, calp1)
|
|
result['azi2'] = Math.atan2d(salp2, calp2)
|
|
if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
result['M12'] = M12; result['M21'] = M21
|
|
if outmask & Geodesic.AREA: result['S12'] = S12
|
|
return result
|
|
|
|
# return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12
|
|
def _GenDirect(self, lat1, lon1, azi1, arcmode, s12_a12, outmask):
|
|
"""Private: General version of direct problem"""
|
|
from geographiclib.geodesicline import GeodesicLine
|
|
# Automatically supply DISTANCE_IN if necessary
|
|
if not arcmode: outmask |= Geodesic.DISTANCE_IN
|
|
line = GeodesicLine(self, lat1, lon1, azi1, outmask)
|
|
return line._GenPosition(arcmode, s12_a12, outmask)
|
|
|
|
def Direct(self, lat1, lon1, azi1, s12,
|
|
outmask = GeodesicCapability.STANDARD):
|
|
"""Solve the direct geodesic problem
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param azi1: azimuth at the first point in degrees
|
|
:param s12: the distance from the first point to the second in
|
|
meters
|
|
:param outmask: the :ref:`output mask <outmask>`
|
|
:return: a :ref:`dict`
|
|
|
|
Compute geodesic starting at (*lat1*, *lon1*) with azimuth *azi1*
|
|
and length *s12*. The default value of *outmask* is STANDARD, i.e.,
|
|
the *lat1*, *lon1*, *azi1*, *lat2*, *lon2*, *azi2*, *s12*, *a12*
|
|
entries are returned.
|
|
|
|
"""
|
|
|
|
a12, lat2, lon2, azi2, s12, m12, M12, M21, S12 = self._GenDirect(
|
|
lat1, lon1, azi1, False, s12, outmask)
|
|
outmask &= Geodesic.OUT_MASK
|
|
result = {'lat1': Math.LatFix(lat1),
|
|
'lon1': lon1 if outmask & Geodesic.LONG_UNROLL else
|
|
Math.AngNormalize(lon1),
|
|
'azi1': Math.AngNormalize(azi1),
|
|
's12': s12}
|
|
result['a12'] = a12
|
|
if outmask & Geodesic.LATITUDE: result['lat2'] = lat2
|
|
if outmask & Geodesic.LONGITUDE: result['lon2'] = lon2
|
|
if outmask & Geodesic.AZIMUTH: result['azi2'] = azi2
|
|
if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
result['M12'] = M12; result['M21'] = M21
|
|
if outmask & Geodesic.AREA: result['S12'] = S12
|
|
return result
|
|
|
|
def ArcDirect(self, lat1, lon1, azi1, a12,
|
|
outmask = GeodesicCapability.STANDARD):
|
|
"""Solve the direct geodesic problem in terms of spherical arc length
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param azi1: azimuth at the first point in degrees
|
|
:param a12: spherical arc length from the first point to the second
|
|
in degrees
|
|
:param outmask: the :ref:`output mask <outmask>`
|
|
:return: a :ref:`dict`
|
|
|
|
Compute geodesic starting at (*lat1*, *lon1*) with azimuth *azi1*
|
|
and arc length *a12*. The default value of *outmask* is STANDARD,
|
|
i.e., the *lat1*, *lon1*, *azi1*, *lat2*, *lon2*, *azi2*, *s12*,
|
|
*a12* entries are returned.
|
|
|
|
"""
|
|
|
|
a12, lat2, lon2, azi2, s12, m12, M12, M21, S12 = self._GenDirect(
|
|
lat1, lon1, azi1, True, a12, outmask)
|
|
outmask &= Geodesic.OUT_MASK
|
|
result = {'lat1': Math.LatFix(lat1),
|
|
'lon1': lon1 if outmask & Geodesic.LONG_UNROLL else
|
|
Math.AngNormalize(lon1),
|
|
'azi1': Math.AngNormalize(azi1),
|
|
'a12': a12}
|
|
if outmask & Geodesic.DISTANCE: result['s12'] = s12
|
|
if outmask & Geodesic.LATITUDE: result['lat2'] = lat2
|
|
if outmask & Geodesic.LONGITUDE: result['lon2'] = lon2
|
|
if outmask & Geodesic.AZIMUTH: result['azi2'] = azi2
|
|
if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
|
|
if outmask & Geodesic.GEODESICSCALE:
|
|
result['M12'] = M12; result['M21'] = M21
|
|
if outmask & Geodesic.AREA: result['S12'] = S12
|
|
return result
|
|
|
|
def Line(self, lat1, lon1, azi1,
|
|
caps = GeodesicCapability.STANDARD |
|
|
GeodesicCapability.DISTANCE_IN):
|
|
"""Return a GeodesicLine object
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param azi1: azimuth at the first point in degrees
|
|
:param caps: the :ref:`capabilities <outmask>`
|
|
:return: a :class:`~geographiclib.geodesicline.GeodesicLine`
|
|
|
|
This allows points along a geodesic starting at (*lat1*, *lon1*),
|
|
with azimuth *azi1* to be found. The default value of *caps* is
|
|
STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
|
|
solved.
|
|
|
|
"""
|
|
|
|
from geographiclib.geodesicline import GeodesicLine
|
|
return GeodesicLine(self, lat1, lon1, azi1, caps)
|
|
|
|
def _GenDirectLine(self, lat1, lon1, azi1, arcmode, s12_a12,
|
|
caps = GeodesicCapability.STANDARD |
|
|
GeodesicCapability.DISTANCE_IN):
|
|
"""Private: general form of DirectLine"""
|
|
from geographiclib.geodesicline import GeodesicLine
|
|
# Automatically supply DISTANCE_IN if necessary
|
|
if not arcmode: caps |= Geodesic.DISTANCE_IN
|
|
line = GeodesicLine(self, lat1, lon1, azi1, caps)
|
|
if arcmode:
|
|
line.SetArc(s12_a12)
|
|
else:
|
|
line.SetDistance(s12_a12)
|
|
return line
|
|
|
|
def DirectLine(self, lat1, lon1, azi1, s12,
|
|
caps = GeodesicCapability.STANDARD |
|
|
GeodesicCapability.DISTANCE_IN):
|
|
"""Define a GeodesicLine object in terms of the direct geodesic
|
|
problem specified in terms of spherical arc length
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param azi1: azimuth at the first point in degrees
|
|
:param s12: the distance from the first point to the second in
|
|
meters
|
|
:param caps: the :ref:`capabilities <outmask>`
|
|
:return: a :class:`~geographiclib.geodesicline.GeodesicLine`
|
|
|
|
This function sets point 3 of the GeodesicLine to correspond to
|
|
point 2 of the direct geodesic problem. The default value of *caps*
|
|
is STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
|
|
solved.
|
|
|
|
"""
|
|
|
|
return self._GenDirectLine(lat1, lon1, azi1, False, s12, caps)
|
|
|
|
def ArcDirectLine(self, lat1, lon1, azi1, a12,
|
|
caps = GeodesicCapability.STANDARD |
|
|
GeodesicCapability.DISTANCE_IN):
|
|
"""Define a GeodesicLine object in terms of the direct geodesic
|
|
problem specified in terms of spherical arc length
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param azi1: azimuth at the first point in degrees
|
|
:param a12: spherical arc length from the first point to the second
|
|
in degrees
|
|
:param caps: the :ref:`capabilities <outmask>`
|
|
:return: a :class:`~geographiclib.geodesicline.GeodesicLine`
|
|
|
|
This function sets point 3 of the GeodesicLine to correspond to
|
|
point 2 of the direct geodesic problem. The default value of *caps*
|
|
is STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
|
|
solved.
|
|
|
|
"""
|
|
|
|
return self._GenDirectLine(lat1, lon1, azi1, True, a12, caps)
|
|
|
|
def InverseLine(self, lat1, lon1, lat2, lon2,
|
|
caps = GeodesicCapability.STANDARD |
|
|
GeodesicCapability.DISTANCE_IN):
|
|
"""Define a GeodesicLine object in terms of the invese geodesic problem
|
|
|
|
:param lat1: latitude of the first point in degrees
|
|
:param lon1: longitude of the first point in degrees
|
|
:param lat2: latitude of the second point in degrees
|
|
:param lon2: longitude of the second point in degrees
|
|
:param caps: the :ref:`capabilities <outmask>`
|
|
:return: a :class:`~geographiclib.geodesicline.GeodesicLine`
|
|
|
|
This function sets point 3 of the GeodesicLine to correspond to
|
|
point 2 of the inverse geodesic problem. The default value of *caps*
|
|
is STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
|
|
solved.
|
|
|
|
"""
|
|
|
|
from geographiclib.geodesicline import GeodesicLine
|
|
a12, _, salp1, calp1, _, _, _, _, _, _ = self._GenInverse(
|
|
lat1, lon1, lat2, lon2, 0)
|
|
azi1 = Math.atan2d(salp1, calp1)
|
|
if caps & (Geodesic.OUT_MASK & Geodesic.DISTANCE_IN):
|
|
caps |= Geodesic.DISTANCE
|
|
line = GeodesicLine(self, lat1, lon1, azi1, caps, salp1, calp1)
|
|
line.SetArc(a12)
|
|
return line
|
|
|
|
def Polygon(self, polyline = False):
|
|
"""Return a PolygonArea object
|
|
|
|
:param polyline: if True then the object describes a polyline
|
|
instead of a polygon
|
|
:return: a :class:`~geographiclib.polygonarea.PolygonArea`
|
|
|
|
"""
|
|
|
|
from geographiclib.polygonarea import PolygonArea
|
|
return PolygonArea(self, polyline)
|
|
|
|
EMPTY = GeodesicCapability.EMPTY
|
|
"""No capabilities, no output."""
|
|
LATITUDE = GeodesicCapability.LATITUDE
|
|
"""Calculate latitude *lat2*."""
|
|
LONGITUDE = GeodesicCapability.LONGITUDE
|
|
"""Calculate longitude *lon2*."""
|
|
AZIMUTH = GeodesicCapability.AZIMUTH
|
|
"""Calculate azimuths *azi1* and *azi2*."""
|
|
DISTANCE = GeodesicCapability.DISTANCE
|
|
"""Calculate distance *s12*."""
|
|
STANDARD = GeodesicCapability.STANDARD
|
|
"""All of the above."""
|
|
DISTANCE_IN = GeodesicCapability.DISTANCE_IN
|
|
"""Allow distance *s12* to be used as input in the direct geodesic
|
|
problem."""
|
|
REDUCEDLENGTH = GeodesicCapability.REDUCEDLENGTH
|
|
"""Calculate reduced length *m12*."""
|
|
GEODESICSCALE = GeodesicCapability.GEODESICSCALE
|
|
"""Calculate geodesic scales *M12* and *M21*."""
|
|
AREA = GeodesicCapability.AREA
|
|
"""Calculate area *S12*."""
|
|
ALL = GeodesicCapability.ALL
|
|
"""All of the above."""
|
|
LONG_UNROLL = GeodesicCapability.LONG_UNROLL
|
|
"""Unroll longitudes, rather than reducing them to the range
|
|
[-180d,180d].
|
|
|
|
"""
|
|
|
|
Geodesic.WGS84 = Geodesic(Constants.WGS84_a, Constants.WGS84_f)
|
|
"""Instantiation for the WGS84 ellipsoid"""
|