usse/scrape/venv/lib/python3.10/site-packages/cattrs/disambiguators.py
2023-12-22 15:26:01 +01:00

133 lines
4.7 KiB
Python

"""Utilities for union (sum type) disambiguation."""
from collections import OrderedDict, defaultdict
from functools import reduce
from operator import or_
from typing import Any, Callable, Dict, Mapping, Optional, Set, Type, Union
from attrs import NOTHING, fields, fields_dict
from ._compat import get_args, get_origin, has, is_literal, is_union_type
__all__ = ("is_supported_union", "create_default_dis_func")
NoneType = type(None)
def is_supported_union(typ: Type) -> bool:
"""Whether the type is a union of attrs classes."""
return is_union_type(typ) and all(
e is NoneType or has(get_origin(e) or e) for e in typ.__args__
)
def create_default_dis_func(
*classes: Type[Any], use_literals: bool = True
) -> Callable[[Mapping[Any, Any]], Optional[Type[Any]]]:
"""Given attrs classes, generate a disambiguation function.
The function is based on unique fields or unique values.
:param use_literals: Whether to try using fields annotated as literals for
disambiguation.
"""
if len(classes) < 2:
raise ValueError("At least two classes required.")
# first, attempt for unique values
if use_literals:
# requirements for a discriminator field:
# (... TODO: a single fallback is OK)
# - it must always be enumerated
cls_candidates = [
{at.name for at in fields(get_origin(cl) or cl) if is_literal(at.type)}
for cl in classes
]
# literal field names common to all members
discriminators: Set[str] = cls_candidates[0]
for possible_discriminators in cls_candidates:
discriminators &= possible_discriminators
best_result = None
best_discriminator = None
for discriminator in discriminators:
# maps Literal values (strings, ints...) to classes
mapping = defaultdict(list)
for cl in classes:
for key in get_args(
fields_dict(get_origin(cl) or cl)[discriminator].type
):
mapping[key].append(cl)
if best_result is None or max(len(v) for v in mapping.values()) <= max(
len(v) for v in best_result.values()
):
best_result = mapping
best_discriminator = discriminator
if (
best_result
and best_discriminator
and max(len(v) for v in best_result.values()) != len(classes)
):
final_mapping = {
k: v[0] if len(v) == 1 else Union[tuple(v)]
for k, v in best_result.items()
}
def dis_func(data: Mapping[Any, Any]) -> Optional[Type]:
if not isinstance(data, Mapping):
raise ValueError("Only input mappings are supported.")
return final_mapping[data[best_discriminator]]
return dis_func
# next, attempt for unique keys
# NOTE: This could just as well work with just field availability and not
# uniqueness, returning Unions ... it doesn't do that right now.
cls_and_attrs = [
(cl, {at.name for at in fields(get_origin(cl) or cl)}) for cl in classes
]
if len([attrs for _, attrs in cls_and_attrs if len(attrs) == 0]) > 1:
raise ValueError("At least two classes have no attributes.")
# TODO: Deal with a single class having no required attrs.
# For each class, attempt to generate a single unique required field.
uniq_attrs_dict: Dict[str, Type] = OrderedDict()
cls_and_attrs.sort(key=lambda c_a: -len(c_a[1]))
fallback = None # If none match, try this.
for i, (cl, cl_reqs) in enumerate(cls_and_attrs):
other_classes = cls_and_attrs[i + 1 :]
if other_classes:
other_reqs = reduce(or_, (c_a[1] for c_a in other_classes))
uniq = cl_reqs - other_reqs
if not uniq:
m = f"{cl} has no usable unique attributes."
raise ValueError(m)
# We need a unique attribute with no default.
cl_fields = fields(get_origin(cl) or cl)
for attr_name in uniq:
if getattr(cl_fields, attr_name).default is NOTHING:
break
else:
raise ValueError(f"{cl} has no usable non-default attributes.")
uniq_attrs_dict[attr_name] = cl
else:
fallback = cl
def dis_func(data: Mapping[Any, Any]) -> Optional[Type]:
if not isinstance(data, Mapping):
raise ValueError("Only input mappings are supported.")
for k, v in uniq_attrs_dict.items():
if k in data:
return v
return fallback
return dis_func
create_uniq_field_dis_func = create_default_dis_func