usse/funda-scraper/venv/lib/python3.10/site-packages/numpy-1.23.3.dist-info/METADATA

65 lines
2.2 KiB
Plaintext

Metadata-Version: 2.1
Name: numpy
Version: 1.23.3
Summary: NumPy is the fundamental package for array computing with Python.
Home-page: https://www.numpy.org
Author: Travis E. Oliphant et al.
Maintainer: NumPy Developers
Maintainer-email: numpy-discussion@python.org
License: BSD
Download-URL: https://pypi.python.org/pypi/numpy
Project-URL: Bug Tracker, https://github.com/numpy/numpy/issues
Project-URL: Documentation, https://numpy.org/doc/1.23
Project-URL: Source Code, https://github.com/numpy/numpy
Platform: Windows
Platform: Linux
Platform: Solaris
Platform: Mac OS-X
Platform: Unix
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Programming Language :: C
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering
Classifier: Typing :: Typed
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: POSIX
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS
Requires-Python: >=3.8
License-File: LICENSE.txt
License-File: LICENSES_bundled.txt
It provides:
- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities
- and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and speedily integrate with a wide
variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
NumPy requires ``pytest`` and ``hypothesis``. Tests can then be run after
installation with::
python -c 'import numpy; numpy.test()'