225 lines
6.9 KiB
Python
225 lines
6.9 KiB
Python
"""Preprocess raw data scraped from Funda"""
|
|
import re
|
|
from datetime import datetime, timedelta
|
|
from typing import Union
|
|
|
|
import pandas as pd
|
|
from dateutil.parser import parse
|
|
|
|
from funda_scraper.config.core import config
|
|
|
|
|
|
def clean_price(x: str) -> int:
|
|
"""Clean the 'price' and transform from string to integer."""
|
|
try:
|
|
return int(str(x).split(" ")[1].replace(".", ""))
|
|
except ValueError:
|
|
return 0
|
|
except IndexError:
|
|
return 0
|
|
|
|
|
|
def clean_year(x: str) -> int:
|
|
"""Clean the 'year' and transform from string to integer"""
|
|
if len(x) == 4:
|
|
return int(x)
|
|
elif x.find("-") != -1:
|
|
return int(x.split("-")[0])
|
|
elif x.find("before") != -1:
|
|
return int(x.split(" ")[1])
|
|
else:
|
|
return 0
|
|
|
|
|
|
def clean_living_area(x: str) -> int:
|
|
"""Clean the 'living_area' and transform from string to integer"""
|
|
try:
|
|
return int(str(x).replace(",", "").split(" m²")[0])
|
|
except ValueError:
|
|
return 0
|
|
except IndexError:
|
|
return 0
|
|
|
|
|
|
def find_keyword_from_regex(x: str, pattern: str) -> int:
|
|
result = re.findall(pattern, x)
|
|
if len(result) > 0:
|
|
result = "".join(result[0])
|
|
x = result.split(" ")[0]
|
|
else:
|
|
x = 0
|
|
return int(x)
|
|
|
|
|
|
def find_n_room(x: str) -> int:
|
|
"""Find the number of rooms from a string"""
|
|
pattern = r"(\d{1,2}\s{1}kamers{0,1})|(\d{1,2}\s{1}rooms{0,1})"
|
|
return find_keyword_from_regex(x, pattern)
|
|
|
|
|
|
def find_n_bedroom(x: str) -> int:
|
|
"""Find the number of bedrooms from a string"""
|
|
pattern = r"(\d{1,2}\s{1}slaapkamers{0,1})|(\d{1,2}\s{1}bedrooms{0,1})"
|
|
return find_keyword_from_regex(x, pattern)
|
|
|
|
|
|
def find_n_bathroom(x: str) -> int:
|
|
"""Find the number of bathrooms from a string"""
|
|
pattern = r"(\d{1,2}\s{1}badkamers{0,1})|(\d{1,2}\s{1}bathrooms{0,1})"
|
|
return find_keyword_from_regex(x, pattern)
|
|
|
|
|
|
def map_dutch_month(x: str) -> str:
|
|
"""Map the month from Dutch to English."""
|
|
month_mapping = {
|
|
"januari": "January",
|
|
"februari": "February",
|
|
"maart": "March",
|
|
"mei": "May",
|
|
"juni": "June",
|
|
"juli": "July",
|
|
"augustus": "August",
|
|
"oktober": "October",
|
|
}
|
|
for k, v in month_mapping.items():
|
|
if x.find(k) != -1:
|
|
x = x.replace(k, v)
|
|
return x
|
|
|
|
|
|
def get_neighbor(x: str) -> str:
|
|
"""Find the neighborhood name."""
|
|
city = x.split("/")[0].replace("-", " ")
|
|
return x.lower().split(city)[-1]
|
|
|
|
|
|
def clean_energy_label(x: str) -> str:
|
|
"""Clean the energy labels."""
|
|
try:
|
|
x = x.split(" ")[0]
|
|
if x.find("A+") != -1:
|
|
x = ">A+"
|
|
return x
|
|
except IndexError:
|
|
return x
|
|
|
|
|
|
def clean_list_date(x: str) -> Union[datetime, str]:
|
|
"""Transform the date from string to datetime object."""
|
|
|
|
x = x.replace("weken", "week")
|
|
x = x.replace("maanden", "month")
|
|
x = x.replace("Vandaag", "Today")
|
|
x = x.replace("+", "")
|
|
x = map_dutch_month(x)
|
|
|
|
def delta_now(d: int):
|
|
t = timedelta(days=d)
|
|
return datetime.now() - t
|
|
|
|
weekdays_dict = {
|
|
"maandag": "Monday",
|
|
"dinsdag": "Tuesday",
|
|
"woensdag": "Wednesday",
|
|
"donderdag": "Thursday",
|
|
"vrijdag": "Friday",
|
|
"zaterdag": "Saturday",
|
|
"zondag": "Sunday",
|
|
}
|
|
|
|
try:
|
|
if x.lower() in weekdays_dict.keys():
|
|
date_string = weekdays_dict.get(x.lower())
|
|
parsed_date = parse(date_string, fuzzy=True)
|
|
delta = datetime.now().weekday() - parsed_date.weekday()
|
|
x = delta_now(delta)
|
|
|
|
elif x.find("month") != -1:
|
|
x = delta_now(int(x.split("month")[0].strip()[0]) * 30)
|
|
elif x.find("week") != -1:
|
|
x = delta_now(int(x.split("week")[0].strip()[0]) * 7)
|
|
elif x.find("Today") != -1:
|
|
x = delta_now(1)
|
|
elif x.find("day") != -1:
|
|
x = delta_now(int(x.split("day")[0].strip()))
|
|
else:
|
|
x = datetime.strptime(x, "%d %B %Y")
|
|
return x
|
|
|
|
except ValueError:
|
|
return "na"
|
|
|
|
|
|
def preprocess_data(df: pd.DataFrame, is_past: bool) -> pd.DataFrame:
|
|
"""
|
|
Clean the raw dataframe from scraping.
|
|
Indicate whether the historical data is included since the columns would be different.
|
|
|
|
:param df: raw dataframe from scraping
|
|
:param is_past: whether it scraped past data
|
|
:return: clean dataframe
|
|
"""
|
|
|
|
df = df.dropna()
|
|
keep_cols = config.keep_cols.selling_data
|
|
keep_cols_sold = keep_cols + config.keep_cols.sold_data
|
|
|
|
# Info
|
|
df["house_id"] = df["url"].apply(lambda x: int(x.split("/")[-2].split("-")[1]))
|
|
df["house_type"] = df["url"].apply(lambda x: x.split("/")[-2].split("-")[0])
|
|
df = df[df["house_type"].isin(["appartement", "huis"])]
|
|
|
|
# Price
|
|
price_col = "price_sold" if is_past else "price"
|
|
df["price"] = df[price_col].apply(clean_price)
|
|
df = df[df["price"] != 0]
|
|
df["living_area"] = df["living_area"].apply(clean_living_area)
|
|
df["perceel_area"] = df["perceel_area"].apply(clean_living_area)
|
|
df = df[df["living_area"] != 0]
|
|
df = df[df["perceel_area"] != 0]
|
|
|
|
df["price_m2"] = round(df.price / df.living_area, 1)
|
|
df["price_m2_total"] = round(df.price / (df.living_area + df.perceel_area), 1)
|
|
|
|
# Location
|
|
df["zip"] = df["zip_code"].apply(lambda x: x[:4])
|
|
|
|
# House layout
|
|
df["room"] = df["num_of_rooms"].apply(find_n_room)
|
|
df["bedroom"] = df["num_of_rooms"].apply(find_n_bedroom)
|
|
df["bathroom"] = df["num_of_bathrooms"].apply(find_n_bathroom)
|
|
df["energy_label"] = df["energy_label"].apply(clean_energy_label)
|
|
|
|
# Time
|
|
df["year_built"] = df["year"].apply(clean_year).astype(int)
|
|
df["house_age"] = datetime.now().year - df["year_built"]
|
|
|
|
# if is_past:
|
|
# # Only check past data
|
|
# df = df[(df["date_sold"] != "na") & (df["date_list"] != "na")]
|
|
# df["date_list"] = df["date_list"].apply(clean_list_date)
|
|
# df["date_sold"] = df["date_sold"].apply(clean_list_date)
|
|
# df = df.dropna()
|
|
# df["date_list"] = pd.to_datetime(df["date_list"])
|
|
# df["date_sold"] = pd.to_datetime(df["date_sold"])
|
|
# df["ym_sold"] = df["date_sold"].apply(lambda x: x.to_period("M").to_timestamp())
|
|
# df["year_sold"] = df["date_sold"].apply(lambda x: x.year)
|
|
#
|
|
# # Term
|
|
# df["term_days"] = df["date_sold"] - df["date_list"]
|
|
# df["term_days"] = df["term_days"].apply(lambda x: x.days)
|
|
# keep_cols = keep_cols_sold
|
|
# df["date_sold"] = df["date_sold"].dt.date
|
|
#
|
|
# else:
|
|
# # Only check current data
|
|
# df["date_list"] = df["listed_since"].apply(clean_list_date)
|
|
# df = df[df["date_list"] != "na"]
|
|
# df["date_list"] = pd.to_datetime(df["date_list"])
|
|
|
|
# df["ym_list"] = df["date_list"].apply(lambda x: x.to_period("M").to_timestamp())
|
|
# df["year_list"] = df["date_list"].apply(lambda x: x.year)
|
|
# df["date_list"] = df["date_list"].dt.date
|
|
|
|
return df[keep_cols].reset_index(drop=True)
|