usse/funda-scraper/venv/lib/python3.10/site-packages/docutils/utils/math/latex2mathml.py

1431 lines
50 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# :Id: $Id: latex2mathml.py 9029 2022-03-05 23:27:50Z milde $
# :Copyright: © 2005 Jens Jørgen Mortensen [1]_
# © 2010, 2021 Günter Milde.
#
# :License: Released under the terms of the `2-Clause BSD license`_, in short:
#
# Copying and distribution of this file, with or without modification,
# are permitted in any medium without royalty provided the copyright
# notice and this notice are preserved.
# This file is offered as-is, without any warranty.
#
# .. _2-Clause BSD license: https://opensource.org/licenses/BSD-2-Clause
#
# .. [1] the original `rst2mathml.py` in `sandbox/jensj/latex_math`
"""Convert LaTex maths code into presentational MathML.
This module is provisional:
the API is not settled and may change with any minor Docutils version.
"""
# Usage:
#
# >>> from latex2mathml import *
import re
import unicodedata
from docutils.utils.math import tex2unichar, toplevel_code
# Character data
# --------------
# LaTeX math macro to Unicode mappings.
# Character categories.
# identifiers -> <mi>
letters = tex2unichar.mathalpha
letters['hbar'] = '\u210F' # compatibility mapping to ℏ (\hslash).
# (ħ LATIN SMALL LETTER H WITH STROKE is upright)
# special case: Capital Greek letters: (upright in TeX style)
greek_capitals = {
'Phi': '\u03a6', 'Xi': '\u039e', 'Sigma': '\u03a3',
'Psi': '\u03a8', 'Delta': '\u0394', 'Theta': '\u0398',
'Upsilon': '\u03d2', 'Pi': '\u03a0', 'Omega': '\u03a9',
'Gamma': '\u0393', 'Lambda': '\u039b'}
# functions -> <mi>
functions = {# functions with a space in the name
'liminf': 'lim\u202finf',
'limsup': 'lim\u202fsup',
'injlim': 'inj\u202flim',
'projlim': 'proj\u202flim',
# embellished function names (see handle_cmd() below)
'varlimsup': 'lim',
'varliminf': 'lim',
'varprojlim': 'lim',
'varinjlim': 'lim',
# custom function name
'operatorname': None,
}
functions.update((name, name) for name in
('arccos', 'arcsin', 'arctan', 'arg', 'cos',
'cosh', 'cot', 'coth', 'csc', 'deg',
'det', 'dim', 'exp', 'gcd', 'hom',
'ker', 'lg', 'ln', 'log', 'Pr',
'sec', 'sin', 'sinh', 'tan', 'tanh'))
# Function with limits: 'lim', 'sup', 'inf', 'max', 'min':
# use <mo> to allow "movablelimits" attribute (see below).
# math font selection -> <mi mathvariant=...> or <mstyle mathvariant=...>
math_alphabets = {# 'cmdname': 'mathvariant value' # package
'boldsymbol': 'bold',
'mathbf': 'bold',
'mathit': 'italic',
'mathtt': 'monospace',
'mathrm': 'normal',
'mathsf': 'sans-serif',
'mathcal': 'script',
'mathbfit': 'bold-italic', # isomath
'mathbb': 'double-struck', # amssymb
'mathfrak': 'fraktur', # amssymb
'mathsfit': 'sans-serif-italic', # isomath
'mathsfbfit': 'sans-serif-bold-italic', # isomath
'mathscr': 'script', # mathrsfs
# unsupported: bold-fraktur
# bold-script
# bold-sans-serif
}
# operator, fence, or separator -> <mo>
stretchables = {# extensible delimiters allowed in left/right cmds
'backslash': '\\',
'uparrow': '\u2191', # ↑ UPWARDS ARROW
'downarrow': '\u2193', # ↓ DOWNWARDS ARROW
'updownarrow': '\u2195', # ↕ UP DOWN ARROW
'Uparrow': '\u21d1', # ⇑ UPWARDS DOUBLE ARROW
'Downarrow': '\u21d3', # ⇓ DOWNWARDS DOUBLE ARROW
'Updownarrow': '\u21d5', # ⇕ UP DOWN DOUBLE ARROW
'lmoustache': '\u23b0', # ⎰ … CURLY BRACKET SECTION
'rmoustache': '\u23b1', # ⎱ … LEFT CURLY BRACKET SECTION
'arrowvert': '\u23d0', # ⏐ VERTICAL LINE EXTENSION
'bracevert': '\u23aa', # ⎪ CURLY BRACKET EXTENSION
'lvert': '|', # left |
'lVert': '\u2016', # left ‖
'rvert': '|', # right |
'rVert': '\u2016', # right ‖
'Arrowvert': '\u2016', # ‖
}
stretchables.update(tex2unichar.mathfence)
stretchables.update(tex2unichar.mathopen) # Braces
stretchables.update(tex2unichar.mathclose) # Braces
# >>> print(' '.join(sorted(set(stretchables.values()))))
# [ \ ] { | } ‖ ↑ ↓ ↕ ⇑ ⇓ ⇕ ⌈ ⌉ ⌊ ⌋ ⌜ ⌝ ⌞ ⌟ ⎪ ⎰ ⎱ ⏐ ⟅ ⟆ ⟦ ⟧ ⟨ ⟩ ⟮ ⟯ ⦇ ⦈
operators = {# negated symbols without pre-composed Unicode character
'nleqq': '\u2266\u0338', # ≦̸
'ngeqq': '\u2267\u0338', # ≧̸
'nleqslant': '\u2a7d\u0338', # ⩽̸
'ngeqslant': '\u2a7e\u0338', # ⩾̸
'ngtrless': '\u2277\u0338', # txfonts
'nlessgtr': '\u2276\u0338', # txfonts
'nsubseteqq': '\u2AC5\u0338', # ⫅̸
'nsupseteqq': '\u2AC6\u0338', # ⫆̸
# compatibility definitions:
'centerdot': '\u2B1D', # BLACK VERY SMALL SQUARE | mathbin
'varnothing': '\u2300', # ⌀ DIAMETER SIGN | empty set
'varpropto': '\u221d', # ∝ PROPORTIONAL TO | sans serif
'triangle': '\u25B3', # WHITE UP-POINTING TRIANGLE | mathord
'triangledown': '\u25BD', # WHITE DOWN-POINTING TRIANGLE | mathord
# alias commands:
'dotsb': '\u22ef', # ⋯ with binary operators/relations
'dotsc': '\u2026', # … with commas
'dotsi': '\u22ef', # ⋯ with integrals
'dotsm': '\u22ef', # ⋯ multiplication dots
'dotso': '\u2026', # … other dots
# functions with movable limits (requires <mo>)
'lim': 'lim',
'sup': 'sup',
'inf': 'inf',
'max': 'max',
'min': 'min',
}
operators.update(tex2unichar.mathbin) # Binary symbols
operators.update(tex2unichar.mathrel) # Relation symbols, arrow symbols
operators.update(tex2unichar.mathord) # Miscellaneous symbols
operators.update(tex2unichar.mathpunct) # Punctuation
operators.update(tex2unichar.mathop) # Variable-sized symbols
operators.update(stretchables)
# special cases
thick_operators = {# style='font-weight: bold;'
'thicksim': '\u223C', #
'thickapprox': '\u2248', # ≈
}
small_operators = {# mathsize='75%'
'shortmid': '\u2223', #
'shortparallel': '\u2225', # ∥
'nshortmid': '\u2224', # ∤
'nshortparallel': '\u2226', # ∦
'smallfrown': '\u2322', # ⌢ FROWN
'smallsmile': '\u2323', # ⌣ SMILE
'smallint': '\u222b', # ∫ INTEGRAL
}
# Operators and functions with limits above/below in display formulas
# and in index position inline (movablelimits=True)
movablelimits = ('bigcap', 'bigcup', 'bigodot', 'bigoplus', 'bigotimes',
'bigsqcup', 'biguplus', 'bigvee', 'bigwedge',
'coprod', 'intop', 'ointop', 'prod', 'sum',
'lim', 'max', 'min', 'sup', 'inf')
# Depending on settings, integrals may also be in this category.
# (e.g. if "amsmath" is loaded with option "intlimits", see
# http://mirror.ctan.org/macros/latex/required/amsmath/amsldoc.pdf)
# movablelimits.extend(('fint', 'iiiint', 'iiint', 'iint', 'int', 'oiint',
# 'oint', 'ointctrclockwise', 'sqint',
# 'varointclockwise',))
# horizontal space -> <mspace>
spaces = {'qquad': '2em', # two \quad
'quad': '1em', # 18 mu
'thickspace': '0.2778em', # 5mu = 5/18em
'medspace': '0.2222em', # 4mu = 2/9em
'thinspace': '0.1667em', # 3mu = 1/6em
'negthinspace': '-0.1667em', # -3mu = -1/6em
'negmedspace': '-0.2222em', # -4mu = -2/9em
'negthickspace': '-0.2778em', # -5mu = -5/18em
' ': '0.25em', # inter word space
';': '0.2778em', # 5mu thickspace
':': '0.2222em', # 4mu medspace
',': '0.1667em', # 3mu thinspace
'!': '-0.1667em', # negthinspace
}
# accents -> <mover stretchy="false">
accents = {# TeX: (spacing, combining)
'acute': ('´', '\u0301'),
'bar': ('ˉ', '\u0304'),
'breve': ('˘', '\u0306'),
'check': ('ˇ', '\u030C'),
'dot': ('˙', '\u0307'),
'ddot': ('¨', '\u0308'),
'dddot': ('', '\u20DB'),
'grave': ('`', '\u0300'),
'hat': ('ˆ', '\u0302'),
'mathring': ('˚', '\u030A'),
'tilde': ('˜', '\u0303'), # tilde ~ or small tilde ˜?
'vec': ('', '\u20d7'), # → too heavy, accents="false"
# TODO: ddddot
}
# limits etc. -> <mover> or <munder>
over = {# TeX: (char, offset-correction/em)
'overbrace': ('\u23DE', -0.2), # DejaVu Math -0.6
'overleftarrow': ('\u2190', -0.2),
'overleftrightarrow': ('\u2194', -0.2),
'overline': ('_', -0.2), # \u2012 does not stretch
'overrightarrow': ('\u2192', -0.2),
'widehat': ('^', -0.5),
'widetilde': ('~', -0.3),
}
under = {'underbrace': ('\u23DF', 0.1), # DejaVu Math -0.7
'underleftarrow': ('\u2190', -0.2),
'underleftrightarrow': ('\u2194', -0.2),
'underline': ('_', -0.8),
'underrightarrow': ('\u2192', -0.2),
}
# Character translations
# ----------------------
# characters with preferred alternative in mathematical use
# cf. https://www.w3.org/TR/MathML3/chapter7.html#chars.anomalous
anomalous_chars = {'-': '\u2212', # HYPHEN-MINUS -> MINUS SIGN
':': '\u2236', # COLON -> RATIO
'~': '\u00a0', # NO-BREAK SPACE
}
# blackboard bold (Greek characters not working with "mathvariant" (Firefox 78)
mathbb = {'Γ': '\u213E', # ℾ
'Π': '\u213F', # ℿ
'Σ': '\u2140', # ⅀
'γ': '\u213D', #
'π': '\u213C', # ℼ
}
# Matrix environments
matrices = {# name: fences
'matrix': ('', ''),
'smallmatrix': ('', ''), # smaller, see begin_environment()!
'pmatrix': ('(', ')'),
'bmatrix': ('[', ']'),
'Bmatrix': ('{', '}'),
'vmatrix': ('|', '|'),
'Vmatrix': ('\u2016', '\u2016'), # ‖
'cases': ('{', ''),
}
layout_styles = {
'displaystyle': {'displaystyle': True, 'scriptlevel': 0},
'textstyle': {'displaystyle': False, 'scriptlevel': 0},
'scriptstyle': {'displaystyle': False, 'scriptlevel': 1},
'scriptscriptstyle': {'displaystyle': False, 'scriptlevel': 2},
}
# See also https://www.w3.org/TR/MathML3/chapter3.html#presm.scriptlevel
fractions = {# name: style_attrs, frac_attrs
'frac': ({}, {}),
'cfrac': ({'displaystyle': True, 'scriptlevel': 0,
'CLASS': 'cfrac'}, {}), # in LaTeX with padding
'dfrac': (layout_styles['displaystyle'], {}),
'tfrac': (layout_styles['textstyle'], {}),
'binom': ({}, {'linethickness': 0}),
'dbinom': (layout_styles['displaystyle'], {'linethickness': 0}),
'tbinom': (layout_styles['textstyle'], {'linethickness': 0}),
}
delimiter_sizes = ['', '1.2em', '1.623em', '2.047em', '2.470em']
bigdelimiters = {'left': 0,
'right': 0,
'bigl': 1,
'bigr': 1,
'Bigl': 2,
'Bigr': 2,
'biggl': 3,
'biggr': 3,
'Biggl': 4,
'Biggr': 4,
}
# MathML element classes
# ----------------------
class math:
"""Base class for MathML elements and root of MathML trees."""
nchildren = None
"""Expected number of children or None"""
# cf. https://www.w3.org/TR/MathML3/chapter3.html#id.3.1.3.2
parent = None
"""Parent node in MathML DOM tree."""
_level = 0 # indentation level (static class variable)
xml_entities = { # for invalid and invisible characters
ord('<'): '&lt;',
ord('>'): '&gt;',
ord('&'): '&amp;',
0x2061: '&ApplyFunction;',
}
_boolstrings = {True: 'true', False: 'false'}
"""String representation of boolean MathML attribute values."""
html_tagname = 'span'
"""Tag name for HTML representation."""
def __init__(self, *children, **attributes):
"""Set up node with `children` and `attributes`.
Attributes are downcased: Use CLASS to set "class" value.
>>> math(mn(3), CLASS='test')
math(mn(3), class='test')
>>> math(CLASS='test').toprettyxml()
'<math class="test">\n</math>'
"""
self.children = []
self.extend(children)
self.attributes = {}
for key in attributes.keys():
# Use .lower() to allow argument `CLASS` for attribute `class`
# (Python keyword). MathML uses only lowercase attributes.
self.attributes[key.lower()] = attributes[key]
def __repr__(self):
content = [repr(item) for item in getattr(self, 'children', [])]
if hasattr(self, 'data'):
content.append(repr(self.data))
if isinstance(self, MathSchema) and self.switch:
content.append('switch=True')
content += ["%s=%r"%(k, v) for k, v in self.attributes.items()
if v is not None]
return self.__class__.__name__ + '(%s)' % ', '.join(content)
def __len__(self):
return len(self.children)
# emulate dictionary-like access to attributes
# see `docutils.nodes.Element` for dict/list interface
def __getitem__(self, key):
return self.attributes[key]
def __setitem__(self, key, item):
self.attributes[key] = item
def get(self, *args, **kwargs):
return self.attributes.get(*args, **kwargs)
def full(self):
"""Return boolean indicating whether children may be appended."""
return (self.nchildren is not None
and len(self) >= self.nchildren)
def append(self, child):
"""Append child and return self or first non-full parent.
If self is full, go up the tree and return first non-full node or
`None`.
"""
if self.full():
raise SyntaxError('Node %s already full!' % self)
self.children.append(child)
child.parent = self
if self.full():
return self.close()
return self
def extend(self, children):
for child in children:
self.append(child)
return self
def close(self):
"""Close element and return first non-full parent or None."""
parent = self.parent
while parent is not None and parent.full():
parent = parent.parent
return parent
def toprettyxml(self):
"""Return XML representation of self as string."""
return ''.join(self._xml())
def _xml(self, level=0):
return ([self.xml_starttag()]
+ self._xml_body(level)
+ ['</%s>' % self.__class__.__name__])
def xml_starttag(self):
attrs = ('%s="%s"' % (k, str(v).replace('True', 'true').replace('False', 'false'))
for k, v in self.attributes.items()
if v is not None)
return '<%s>' % ' '.join((self.__class__.__name__, *attrs))
def _xml_body(self, level=0):
xml = []
for child in self.children:
xml.extend(['\n', ' ' * (level+1)])
xml.extend(child._xml(level+1))
xml.extend(['\n', ' ' * level])
return xml
# >>> n2 = math(mn(2))
# >>> n2
# math(mn(2))
# >>> n2.toprettyxml()
# '<math>\n <mn>2</mn>\n</math>'
# >>> len(n2)
# 1
# >>> eq3 = math(id='eq3', display='block')
# >>> eq3
# math(display='block', id='eq3')
# >>> eq3.toprettyxml()
# '<math display="block" id="eq3">\n</math>'
# >>> len(eq3)
# 0
# >>> math(CLASS='bold').xml_starttag()
# '<math class="bold">'
class mtable(math): pass
# >>> mt = mtable(displaystyle=True)
# >>> mt
# mtable(displaystyle=True)
# >>> math(mt).toprettyxml()
# '<math>\n <mtable displaystyle="true">\n </mtable>\n</math>'
class mrow(math):
"""Group sub-expressions as a horizontal row."""
def close(self):
"""Close element and return first non-full parent or None.
Remove <mrow>, if it is single child and the parent infers an mrow
or if it has only one child element.
"""
parent = self.parent
if isinstance(parent, MathRowSchema) and parent.nchildren == 1:
parent.nchildren = len(parent.children)
parent.children = self.children
for child in self.children:
child.parent = parent
return parent.close()
if len(self) == 1:
try:
parent.children[parent.children.index(self)] = self.children[0]
self.children[0].parent = parent
except (AttributeError, ValueError):
return self.children[0]
return super().close()
# >>> mrow(displaystyle=False)
# mrow(displaystyle=False)
# The elements <msqrt>, <mstyle>, <merror>, <mpadded>, <mphantom>, <menclose>,
# <mtd>, <mscarry>, and <math> treat their contents as a single inferred mrow
# formed from all their children.
class MathRowSchema(math):
"""Base class for elements treating content as a single inferred mrow."""
class mtr(MathRowSchema): pass
class mtd(MathRowSchema): pass
class menclose(MathRowSchema):
nchildren = 1 # \boxed expects one argument or a group
class mphantom(MathRowSchema):
nchildren = 1 # \phantom expects one argument or a group
class msqrt(MathRowSchema):
nchildren = 1 # \sqrt expects one argument or a group
class mstyle(MathRowSchema):
nchildren = 1 # \mathrm, ... expect one argument or a group
class MathToken(math):
"""Token Element: contains textual data instead of children.
Base class for mo, mi, and mn.
"""
nchildren = 0
def __init__(self, data, **attributes):
self.data = data
super().__init__(**attributes)
def _xml_body(self, level=0):
return [str(self.data).translate(self.xml_entities)]
class mtext(MathToken): pass
class mi(MathToken): pass
class mo(MathToken): pass
class mn(MathToken): pass
# >>> mo('<')
# mo('<')
# >>> mo('<')._xml()
# ['<mo>', '&lt;', '</mo>']
class MathSchema(math):
"""Base class for schemata expecting 2 or more children.
The special attribute `switch` indicates that the last two child
elements are in reversed order and must be switched before XML-export.
"""
nchildren = 2
def __init__(self, *children, **kwargs):
self.switch = kwargs.pop('switch', False)
math.__init__(self, *children, **kwargs)
def append(self, child):
current_node = super().append(child)
# normalize order if full
if self.switch and self.full():
self.children[-1], self.children[-2] = self.children[-2], self.children[-1]
self.switch = False
return current_node
class msub(MathSchema): pass
class msup(MathSchema): pass
class msubsup(MathSchema):
nchildren = 3
# >>> msub(mi('x'), mo('-'))
# msub(mi('x'), mo('-'))
# >>> msubsup(mi('base'), mi('sub'), mi('super'))
# msubsup(mi('base'), mi('sub'), mi('super'))
# >>> msubsup(mi('base'), mi('super'), mi('sub'), switch=True)
# msubsup(mi('base'), mi('sub'), mi('super'))
class munder(msub): pass
class mover(msup): pass
# >>> munder(mi('lim'), mo('-'), accent=False)
# munder(mi('lim'), mo('-'), accent=False)
# >>> mu = munder(mo('-'), accent=False, switch=True)
# >>> mu
# munder(mo('-'), switch=True, accent=False)
# >>> mu.append(mi('lim'))
# >>> mu
# munder(mi('lim'), mo('-'), accent=False)
# >>> mu.append(mi('lim'))
# Traceback (most recent call last):
# SyntaxError: Node munder(mi('lim'), mo('-'), accent=False) already full!
# >>> munder(mo('-'), mi('lim'), accent=False, switch=True).toprettyxml()
# '<munder accent="false">\n <mi>lim</mi>\n <mo>-</mo>\n</munder>'
class munderover(msubsup): pass
class mroot(MathSchema):
nchildren = 2
class mfrac(math):
nchildren = 2
class mspace(math):
nchildren = 0
# LaTeX to MathML translation
# ---------------------------
# auxiliary functions
# ~~~~~~~~~~~~~~~~~~~
def tex_cmdname(string):
"""Return leading TeX command name and remainder of `string`.
>>> tex_cmdname('mymacro2') # up to first non-letter
('mymacro', '2')
>>> tex_cmdname('name 2') # strip trailing whitespace
('name', '2')
>>> tex_cmdname('_2') # single non-letter character
('_', '2')
"""
m = re.match(r'([a-zA-Z]+) *(.*)', string)
if m is None:
m = re.match(r'(.?)(.*)', string)
return m.group(1), m.group(2)
# Test:
#
# >>> tex_cmdname('name_2') # first non-letter terminates
# ('name', '_2')
# >>> tex_cmdname(' next') # leading whitespace is returned
# (' ', 'next')
# >>> tex_cmdname('1 2') # whitespace after non-letter is kept
# ('1', ' 2')
# >>> tex_cmdname('') # empty string
# ('', '')
def tex_number(string):
"""Return leading number literal and remainder of `string`.
>>> tex_number('123.4')
('123.4', '')
"""
m = re.match(r'([0-9.,]*[0-9]+)(.*)', string)
if m is None:
return '', string
return m.group(1), m.group(2)
# Test:
#
# >>> tex_number(' 23.4b') # leading whitespace -> no number
# ('', ' 23.4b')
# >>> tex_number('23,400/2') # comma separator included
# ('23,400', '/2')
# >>> tex_number('23. 4/2') # trailing separator not included
# ('23', '. 4/2')
# >>> tex_number('4, 2') # trailing separator not included
# ('4', ', 2')
# >>> tex_number('1 000.4')
# ('1', ' 000.4')
def tex_token(string):
"""Return first simple TeX token and remainder of `string`.
>>> tex_token('\\command{without argument}')
('\\command', '{without argument}')
>>> tex_token('or first character')
('o', 'r first character')
"""
m = re.match(r"""((?P<cmd>\\[a-zA-Z]+)\s* # TeX command, skip whitespace
|(?P<chcmd>\\.) # one-character TeX command
|(?P<ch>.?)) # first character (or empty)
(?P<remainder>.*$) # remaining part of string
""", string, re.VERBOSE)
cmd, chcmd, ch, remainder = m.group('cmd', 'chcmd', 'ch', 'remainder')
return cmd or chcmd or ch, remainder
# Test:
#
# >>> tex_token('{opening bracket of group}')
# ('{', 'opening bracket of group}')
# >>> tex_token('\\skip whitespace after macro name')
# ('\\skip', 'whitespace after macro name')
# >>> tex_token('. but not after single char')
# ('.', ' but not after single char')
# >>> tex_token('') # empty string.
# ('', '')
# >>> tex_token('\{escaped bracket')
# ('\\{', 'escaped bracket')
def tex_group(string):
"""Return first TeX group or token and remainder of `string`.
>>> tex_group('{first group} returned without brackets')
('first group', ' returned without brackets')
"""
split_index = 0
nest_level = 0 # level of {{nested} groups}
escape = False # the next character is escaped (\)
if not string.startswith('{'):
# special case: there is no group, return first token and remainder
return string[:1], string[1:]
for c in string:
split_index += 1
if escape:
escape = False
elif c == '\\':
escape = True
elif c == '{':
nest_level += 1
elif c == '}':
nest_level -= 1
if nest_level == 0:
break
else:
raise SyntaxError('Group without closing bracket')
return string[1:split_index-1], string[split_index:]
# >>> tex_group('{} empty group')
# ('', ' empty group')
# >>> tex_group('{group with {nested} group} ')
# ('group with {nested} group', ' ')
# >>> tex_group('{group with {nested group}} at the end')
# ('group with {nested group}', ' at the end')
# >>> tex_group('{{group} {with {{complex }nesting}} constructs}')
# ('{group} {with {{complex }nesting}} constructs', '')
# >>> tex_group('{group with \\{escaped\\} brackets}')
# ('group with \\{escaped\\} brackets', '')
# >>> tex_group('{group followed by closing bracket}} from outer group')
# ('group followed by closing bracket', '} from outer group')
# >>> tex_group('No group? Return first character.')
# ('N', 'o group? Return first character.')
# >>> tex_group(' {also whitespace}')
# (' ', '{also whitespace}')
def tex_token_or_group(string):
"""Return first TeX group or token and remainder of `string`.
>>> tex_token_or_group('\\command{without argument}')
('\\command', '{without argument}')
>>> tex_token_or_group('first character')
('f', 'irst character')
>>> tex_token_or_group(' also whitespace')
(' ', 'also whitespace')
>>> tex_token_or_group('{first group} keep rest')
('first group', ' keep rest')
"""
arg, remainder = tex_token(string)
if arg == '{':
arg, remainder = tex_group(string.lstrip())
return arg, remainder
# >>> tex_token_or_group('\{no group but left bracket')
# ('\\{', 'no group but left bracket')
def tex_optarg(string):
"""Return optional argument and remainder.
>>> tex_optarg('[optional argument] returned without brackets')
('optional argument', ' returned without brackets')
>>> tex_optarg('{empty string, if there is no optional arg}')
('', '{empty string, if there is no optional arg}')
"""
m = re.match(r"""\s* # leading whitespace
\[(?P<optarg>(\\]|[^\[\]]|\\])*)\] # [group] without nested groups
(?P<remainder>.*$)
""", string, re.VERBOSE)
if m is None and not string.startswith('['):
return '', string
try:
return m.group('optarg'), m.group('remainder')
except AttributeError:
raise SyntaxError('Could not extract optional argument from %r' % string)
# Test:
# >>> tex_optarg(' [optional argument] after whitespace')
# ('optional argument', ' after whitespace')
# >>> tex_optarg('[missing right bracket')
# Traceback (most recent call last):
# SyntaxError: Could not extract optional argument from '[missing right bracket'
# >>> tex_optarg('[group with [nested group]]')
# Traceback (most recent call last):
# SyntaxError: Could not extract optional argument from '[group with [nested group]]'
def parse_latex_math(node, string):
"""Append MathML conversion of `string` to `node` and return it.
>>> parse_latex_math(math(), r'\alpha')
math(mi('α'))
>>> parse_latex_math(mrow(), r'x_{n}')
mrow(msub(mi('x'), mi('n')))
"""
# Normalize white-space:
string = ' '.join(string.split())
tree = node
while len(string) > 0:
# Take off first character:
c, string = string[0], string[1:]
if c == ' ':
continue # whitespace is ignored in LaTeX math mode
if c == '\\': # start of a LaTeX macro
cmdname, string = tex_cmdname(string)
node, string = handle_cmd(cmdname, node, string)
elif c in "_^":
node = handle_script_or_limit(node, c)
elif c == '{':
new_node = mrow()
node.append(new_node)
node = new_node
elif c == '}':
node = node.close()
elif c == '&':
new_node = mtd()
node.close().append(new_node)
node = new_node
elif c.isalpha():
node = node.append(mi(c))
elif c.isdigit():
number, string = tex_number(string)
node = node.append(mn(c+number))
elif c in anomalous_chars:
# characters with a special meaning in LaTeX math mode
# fix spacing before "unary" minus.
attributes = {}
if c == '-' and node.children:
previous_node = node.children[-1]
if (getattr(previous_node, 'data', '-') in '([='
or previous_node.get('class') == 'mathopen'):
attributes['form'] = 'prefix'
node = node.append(mo(anomalous_chars[c], **attributes))
elif c in "/()[]|":
node = node.append(mo(c, stretchy=False))
elif c in "+*=<>,.!?`';@":
node = node.append(mo(c))
else:
raise SyntaxError('Unsupported character: "%s"' % c)
return tree
# Test:
# >>> print(parse_latex_math(math(), ''))
# math()
# >>> parse_latex_math(math(), ' \\sqrt{ \\alpha}')
# math(msqrt(mi('α')))
# >>> parse_latex_math(math(), '23.4x')
# math(mn('23.4'), mi('x'))
# >>> parse_latex_math(math(), '\\sqrt 2 \\ne 3')
# math(msqrt(mn('2')), mo('≠'), mn('3'))
# >>> parse_latex_math(math(), '\\sqrt{2 + 3} < 3')
# math(msqrt(mn('2'), mo('+'), mn('3')), mo('<'), mn('3'))
# >>> parse_latex_math(math(), '\\sqrt[3]{2 + 3}')
# math(mroot(mrow(mn('2'), mo('+'), mn('3')), mn('3')))
# >>> parse_latex_math(math(), '\max_x') # function takes limits
# math(munder(mo('max', movablelimits=True), mi('x')))
# >>> parse_latex_math(math(), 'x^j_i') # ensure correct order: base, sub, sup
# math(msubsup(mi('x'), mi('i'), mi('j')))
# >>> parse_latex_math(math(), '\int^j_i') # ensure correct order
# math(msubsup(mo('∫'), mi('i'), mi('j')))
# >>> parse_latex_math(math(), 'x_{\\alpha}')
# math(msub(mi('x'), mi('α')))
# >>> parse_latex_math(math(), 'x_\\text{in}')
# math(msub(mi('x'), mtext('in')))
def handle_cmd(name, node, string): # noqa: C901 TODO make this less complex
"""Process LaTeX command `name` followed by `string`.
Append result to `node`.
If needed, parse `string` for command argument.
Return new current node and remainder of `string`:
>>> handle_cmd('hbar', math(), r' \frac')
(math(mi('')), ' \\frac')
>>> handle_cmd('hspace', math(), r'{1ex} (x)')
(math(mspace(width='1ex')), ' (x)')
"""
# Token elements
# ==============
# identifier -> <mi>
if name in letters:
new_node = mi(letters[name])
if name in greek_capitals:
# upright in "TeX style" but MathML sets them italic ("ISO style").
# CSS styling does not change the font style in Firefox 78.
# Use 'mathvariant="normal"'?
new_node['class'] = 'capital-greek'
node = node.append(new_node)
return node, string
if name in functions:
# use <mi> followed by invisible function applicator character
# (see https://www.w3.org/TR/MathML3/chapter3.html#presm.mi)
if name == 'operatorname':
# custom function name, e.g. ``\operatorname{abs}(x)``
# TODO: \operatorname* -> with limits
arg, string = tex_token_or_group(string)
new_node = mi(arg, mathvariant='normal')
else:
new_node = mi(functions[name])
# embellished function names:
if name == 'varliminf': # \underline\lim
new_node = munder(new_node, mo('_'))
elif name == 'varlimsup': # \overline\lim
new_node = mover(new_node, mo('¯'), accent=False)
elif name == 'varprojlim': # \underleftarrow\lim
new_node = munder(new_node, mo('\u2190'))
elif name == 'varinjlim': # \underrightarrow\lim
new_node = munder(new_node, mo('\u2192'))
node = node.append(new_node)
# add ApplyFunction when appropriate (not \sin^2(x), say)
# cf. https://www.w3.org/TR/MathML3/chapter3.html#presm.mi
if string and string[0] not in ('^', '_'):
node = node.append(mo('\u2061')) # &ApplyFunction;
return node, string
if name in math_alphabets:
if name == 'boldsymbol':
attributes = {'class': 'boldsymbol'}
else:
attributes = {'mathvariant': math_alphabets[name]}
if name == 'mathscr':
attributes['class'] = 'mathscr'
# Check for single symbol (letter, name, or ⅀)
arg, remainder = tex_token_or_group(string)
if arg.startswith('\\'):
# convert single letters (so the isalpha() test below works).
# TODO: convert all LICRs in a group (\matrm{\mu\Omega})
arg = letters.get(arg[1:], arg)
if name == 'mathbb':
# mathvariant="double-struck" is ignored for Greek letters
# (tested in Firefox 78). Use literal Unicode characters.
arg = mathbb.get(arg, arg)
if arg.isalpha() or arg == '\u2140':
node = node.append(mi(arg, **attributes))
return node, remainder
# Wrap in <style>
style = mstyle(**attributes)
node.append(style)
return style, string
# operator, fence, or separator -> <mo>
if name == 'colon': # trailing punctuation, not binary relation
node = node.append(mo(':', form='postfix', lspace='0', rspace='0.28em'))
return node, string
if name == 'idotsint':
node = parse_latex_math(node, r'\int\dotsi\int')
return node, string
if name in thick_operators:
node = node.append(mo(thick_operators[name], style='font-weight: bold'))
return node, string
if name in small_operators:
node = node.append(mo(small_operators[name], mathsize='75%'))
return node, string
if name in operators:
attributes = {}
if name in movablelimits and string and string[0] in ' _^':
attributes['movablelimits'] = True
elif name in ('lvert', 'lVert'):
attributes['class'] = 'mathopen'
node = node.append(mo(operators[name], **attributes))
return node, string
if name in bigdelimiters:
delimiter_attributes = {}
size = delimiter_sizes[bigdelimiters[name]]
delimiter, string = tex_token_or_group(string)
if delimiter not in '()[]/|.':
try:
delimiter = stretchables[delimiter.lstrip('\\')]
except KeyError:
raise SyntaxError('Unsupported "\\%s" delimiter "%s"!'
% (name, delimiter))
if size:
delimiter_attributes['maxsize'] = size
delimiter_attributes['minsize'] = size
delimiter_attributes['symmetric'] = True
if name == 'left' or name.endswith('l'):
row = mrow()
node.append(row)
node = row
if delimiter != '.': # '.' stands for "empty delimiter"
node.append(mo(delimiter, **delimiter_attributes))
if name == 'right' or name.endswith('r'):
node = node.close()
return node, string
if name == 'not':
arg, string = tex_token(string)
if arg == '{':
return node, '{\\not ' + string
if arg.startswith('\\'): # LaTeX macro
try:
arg = operators[arg[1:]]
except KeyError:
raise SyntaxError('\\not: Cannot negate: "%s"!'%arg)
arg = unicodedata.normalize('NFC', arg+'\u0338')
node = node.append(mo(arg))
return node, string
# arbitrary text (usually comments) -> <mtext>
if name in ('text', 'mbox', 'textrm'):
arg, string = tex_token_or_group(string)
parts = arg.split('$') # extract inline math
for i, part in enumerate(parts):
if i % 2 == 0: # i is even
part = re.sub('(^ | $)', '\u00a0', part)
node = node.append(mtext(part))
else:
parse_latex_math(node, part)
return node, string
# horizontal space -> <mspace>
if name in spaces:
node = node.append(mspace(width='%s'%spaces[name]))
return node, string
if name in ('hspace', 'mspace'):
arg, string = tex_group(string)
if arg.endswith('m'):
arg = '%sem' % (float(arg[:-2])/18)
node = node.append(mspace(width='%s'%arg))
return node, string
if name == 'phantom':
new_node = mphantom()
node.append(new_node)
return new_node, string
if name == 'boxed':
new_node = menclose(notation='box')
node.append(new_node)
return new_node, string
# Complex elements (Layout schemata)
# ==================================
if name == 'sqrt':
radix, string = tex_optarg(string)
if radix:
indexnode = mrow()
new_node = mroot(indexnode, switch=True)
parse_latex_math(indexnode, radix)
indexnode.close()
else:
new_node = msqrt()
node.append(new_node)
return new_node, string
if name in fractions:
(style_atts, frac_atts) = fractions[name]
if name == 'cfrac':
optarg, string = tex_optarg(string)
optargs = {'l': 'left', 'r': 'right'}
if optarg in optargs:
frac_atts = frac_atts.copy()
frac_atts['numalign'] = optargs[optarg] # "numalign" is deprecated
frac_atts['class'] = 'numalign-' + optargs[optarg]
new_node = frac = mfrac(**frac_atts)
if name.endswith('binom'):
new_node = mrow(mo('('), new_node, mo(')'), CLASS='binom')
new_node.nchildren = 3
if style_atts:
new_node = mstyle(new_node, **style_atts)
node.append(new_node)
return frac, string
if name == '\\': # end of a row
entry = mtd()
new_node = mtr(entry)
node.close().close().append(new_node)
return entry, string
if name in accents:
new_node = mover(mo(accents[name][0], stretchy=False), switch=True)
if name == 'vec':
new_node.children[0]['accent'] = False # scale down arrow but drop i-dot
new_node.tex_cmd = name # for HTML export
node.append(new_node)
return new_node, string
if name in over:
# set "accent" to False (otherwise dots on i and j are dropped)
# but to True on accent node get "textstyle" (full size) symbols on top
new_node = mover(mo(over[name][0], accent=True),
switch=True, accent=False)
new_node.tex_cmd = name # for HTML export
node.append(new_node)
return new_node, string
if name == 'overset':
new_node = mover(switch=True)
node.append(new_node)
return new_node, string
if name in under:
new_node = munder(mo(under[name][0]), switch=True)
new_node.tex_cmd = name # for HTML export
node.append(new_node)
return new_node, string
if name == 'underset':
new_node = munder(switch=True)
node.append(new_node)
return new_node, string
if name in ('xleftarrow', 'xrightarrow'):
subscript, string = tex_optarg(string)
base = mo(operators['long'+name[1:]])
if subscript:
new_node = munderover(base)
sub_node = parse_latex_math(mrow(), subscript)
if len(sub_node) == 1:
sub_node = sub_node.children[0]
new_node.append(sub_node)
else:
new_node = mover(base)
node.append(new_node)
return new_node, string
if name in layout_styles: # 'displaystyle', 'textstyle', ...
new_node = mstyle(**layout_styles[name])
new_node.nchildren = None
if isinstance(node, mrow) and len(node) == 0:
# replace node with new_node
node.parent.children[node.parent.children.index(node)] = new_node
new_node.parent = node.parent
elif node.__class__.__name__ == 'math':
node.append(new_node)
else:
raise SyntaxError('Declaration "\\%s" must be first command '
'in a group.' % name)
return new_node, string
if name.endswith('limits'):
arg, remainder = tex_token(string)
if arg in '_^': # else ignore
string = remainder
node = handle_script_or_limit(node, arg, limits=name)
return node, string
# Environments
if name == 'begin':
return begin_environment(node, string)
if name == 'end':
return end_environment(node, string)
raise SyntaxError('Unknown LaTeX command: ' + name)
# >>> handle_cmd('left', math(), '[a\\right]')
# (mrow(mo('[')), 'a\\right]')
# >>> handle_cmd('left', math(), '. a)') # empty \left
# (mrow(), ' a)')
# >>> handle_cmd('left', math(), '\\uparrow a)') # cmd
# (mrow(mo('↑')), 'a)')
# >>> handle_cmd('not', math(), '\\equiv \\alpha)') # cmd
# (math(mo('≢')), '\\alpha)')
# >>> handle_cmd('text', math(), '{ for } i>0') # group
# (math(mtext('\xa0for\xa0')), ' i>0')
# >>> handle_cmd('text', math(), '{B}T') # group
# (math(mtext('B')), 'T')
# >>> handle_cmd('text', math(), '{number of apples}}') # group
# (math(mtext('number of apples')), '}')
# >>> handle_cmd('text', math(), 'i \\sin(x)') # single char
# (math(mtext('i')), ' \\sin(x)')
# >>> handle_cmd('sin', math(), '(\\alpha)')
# (math(mi('sin'), mo('\u2061')), '(\\alpha)')
# >>> handle_cmd('sin', math(), ' \\alpha')
# (math(mi('sin'), mo('\u2061')), ' \\alpha')
# >>> handle_cmd('operatorname', math(), '{abs}(x)')
# (math(mi('abs', mathvariant='normal'), mo('\u2061')), '(x)')
# >>> handle_cmd('mathrm', math(), '\\alpha')
# (math(mi('α', mathvariant='normal')), '')
# >>> handle_cmd('mathrm', math(), '{out} = 3')
# (math(mi('out', mathvariant='normal')), ' = 3')
# >>> handle_cmd('overline', math(), '{981}')
# (mover(mo('¯', accent=True), switch=True, accent=False), '{981}')
# >>> handle_cmd('bar', math(), '{x}')
# (mover(mo('ˉ', stretchy=False), switch=True), '{x}')
# >>> handle_cmd('xleftarrow', math(), r'[\alpha]{10}')
# (munderover(mo('⟵'), mi('α')), '{10}')
# >>> handle_cmd('xleftarrow', math(), r'[\alpha=5]{10}')
# (munderover(mo('⟵'), mrow(mi('α'), mo('='), mn('5'))), '{10}')
def handle_script_or_limit(node, c, limits=''):
"""Append script or limit element to `node`."""
child = node.children.pop()
if limits == 'limits':
child['movablelimits'] = False
elif (limits == 'movablelimits'
or getattr(child, 'data', '') in movablelimits):
child['movablelimits'] = True
if c == '_':
if isinstance(child, mover):
new_node = munderover(*child.children, switch=True)
elif isinstance(child, msup):
new_node = msubsup(*child.children, switch=True)
elif (limits in ('limits', 'movablelimits')
or limits == '' and child.get('movablelimits', None)):
new_node = munder(child)
else:
new_node = msub(child)
elif c == '^':
if isinstance(child, munder):
new_node = munderover(*child.children)
elif isinstance(child, msub):
new_node = msubsup(*child.children)
elif (limits in ('limits', 'movablelimits')
or limits == '' and child.get('movablelimits', None)):
new_node = mover(child)
else:
new_node = msup(child)
node.append(new_node)
return new_node
def begin_environment(node, string):
name, string = tex_group(string)
if name in matrices:
left_delimiter = matrices[name][0]
attributes = {}
if left_delimiter:
wrapper = mrow(mo(left_delimiter))
if name == 'cases':
wrapper = mrow(mo(left_delimiter, rspace='0.17em'))
attributes['columnalign'] = 'left'
node.append(wrapper)
node = wrapper
elif name == 'smallmatrix':
attributes['rowspacing'] = '0.02em'
attributes['columnspacing'] = '0.333em'
wrapper = mstyle(scriptlevel='1')
node.append(wrapper)
node = wrapper
# TODO: aligned, alignedat
# take an optional [t], [b] or the default [c]
entry = mtd()
node.append(mtable(mtr(entry), **attributes))
node = entry
else:
raise SyntaxError('Environment not supported!')
return node, string
def end_environment(node, string):
name, string = tex_group(string)
if name in matrices:
node = node.close().close().close() # close: mtd, mdr, mtable
right_delimiter = matrices[name][1]
if right_delimiter:
node = node.append(mo(right_delimiter))
node = node.close()
elif name == 'cases':
node = node.close()
else:
raise SyntaxError('Environment not supported!')
return node, string
# Return the number of "equation_columns" in `code_lines`. cf. "alignat"
# in http://mirror.ctan.org/macros/latex/required/amsmath/amsldoc.pdf
def tex_equation_columns(rows):
tabs = max(row.count('&') - row.count(r'\&') for row in rows)
if tabs == 0:
return 0
return int(tabs/2 + 1)
# >>> tex_equation_columns(['a = b'])
# 0
# >>> tex_equation_columns(['a &= b'])
# 1
# >>> tex_equation_columns(['a &= b & a \in S'])
# 2
# >>> tex_equation_columns(['a &= b & c &= d'])
# 2
# Return dictionary with attributes to style an <mtable> as align environment:
def align_attributes(rows):
atts = {'class': 'align',
'displaystyle': True}
tabs = max(row.count('&') - row.count(r'\&') for row in rows)
if tabs:
aligns = ['right', 'left'] * tabs
spacing = ['0', '2em'] * tabs
atts['columnalign'] = ' '.join(aligns[:tabs+1])
atts['columnspacing'] = ' '.join(spacing[:tabs])
return atts
# >>> align_attributes(['a = b'])
# {'class': 'align', 'displaystyle': True}
# >>> align_attributes(['a &= b'])
# {'class': 'align', 'displaystyle': True, 'columnalign': 'right left', 'columnspacing': '0'}
# >>> align_attributes(['a &= b & a \in S'])
# {'class': 'align', 'displaystyle': True, 'columnalign': 'right left right', 'columnspacing': '0 2em'}
# >>> align_attributes(['a &= b & c &= d'])
# {'class': 'align', 'displaystyle': True, 'columnalign': 'right left right left', 'columnspacing': '0 2em 0'}
def tex2mathml(tex_math, inline=True):
"""Return string with MathML code corresponding to `tex_math`.
Set `inline` to False for displayed math.
"""
# Set up tree
math_tree = math(xmlns='http://www.w3.org/1998/Math/MathML')
node = math_tree
if not inline:
math_tree['display'] = 'block'
rows = toplevel_code(tex_math).split(r'\\')
if len(rows) > 1:
# emulate align* environment with a math table
node = mtd()
math_tree.append(mtable(mtr(node),
**align_attributes(rows)))
parse_latex_math(node, tex_math)
return math_tree.toprettyxml()
# >>> print(tex2mathml('3'))
# <math xmlns="http://www.w3.org/1998/Math/MathML">
# <mn>3</mn>
# </math>
# >>> print(tex2mathml('3', inline=False))
# <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
# <mn>3</mn>
# </math>
# >>> print(tex2mathml(r'a & b \\ c & d', inline=False))
# <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
# <mtable class="align" columnalign="right left" columnspacing="0" displaystyle="true">
# <mtr>
# <mtd>
# <mi>a</mi>
# </mtd>
# <mtd>
# <mi>b</mi>
# </mtd>
# </mtr>
# <mtr>
# <mtd>
# <mi>c</mi>
# </mtd>
# <mtd>
# <mi>d</mi>
# </mtd>
# </mtr>
# </mtable>
# </math>
# >>> print(tex2mathml(r'a \\ b', inline=False))
# <math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
# <mtable class="align" displaystyle="true">
# <mtr>
# <mtd>
# <mi>a</mi>
# </mtd>
# </mtr>
# <mtr>
# <mtd>
# <mi>b</mi>
# </mtd>
# </mtr>
# </mtable>
# </math>
# TODO: look up more symbols from tr25, e.g.
#
#
# Table 2.8 Using Vertical Line or Solidus Overlay
# some of the negated forms of mathematical relations that can only be
# encoded by using either U+0338 COMBINING LONG SOLIDUS OVERLAY or U+20D2
# COMBINING LONG VERTICAL LINE OVERLAY . (For issues with using 0338 in
# MathML, see Section 3.2.7, Combining Marks.
#
# Table 2.9 Variants of Mathematical Symbols using VS1?
#
# Sequence Description
# 0030 + VS1 DIGIT ZERO - short diagonal stroke form
# 2205 + VS1 EMPTY SET - zero with long diagonal stroke overlay form
# 2229 + VS1 INTERSECTION - with serifs
# 222A + VS1 UNION - with serifs
# 2268 + VS1 LESS-THAN BUT NOT EQUAL TO - with vertical stroke
# 2269 + VS1 GREATER-THAN BUT NOT EQUAL TO - with vertical stroke
# 2272 + VS1 LESS-THAN OR EQUIVALENT TO - following the slant of the lower leg
# 2273 + VS1 GREATER-THAN OR EQUIVALENT TO - following the slant of the lower leg
# 228A + VS1 SUBSET OF WITH NOT EQUAL TO - variant with stroke through bottom members
# 228B + VS1 SUPERSET OF WITH NOT EQUAL TO - variant with stroke through bottom members
# 2293 + VS1 SQUARE CAP - with serifs
# 2294 + VS1 SQUARE CUP - with serifs
# 2295 + VS1 CIRCLED PLUS - with white rim
# 2297 + VS1 CIRCLED TIMES - with white rim
# 229C + VS1 CIRCLED EQUALS - equal sign inside and touching the circle
# 22DA + VS1 LESS-THAN slanted EQUAL TO OR GREATER-THAN
# 22DB + VS1 GREATER-THAN slanted EQUAL TO OR LESS-THAN
# 2A3C + VS1 INTERIOR PRODUCT - tall variant with narrow foot
# 2A3D + VS1 RIGHTHAND INTERIOR PRODUCT - tall variant with narrow foot
# 2A9D + VS1 SIMILAR OR LESS-THAN - following the slant of the upper leg
# 2A9E + VS1 SIMILAR OR GREATER-THAN - following the slant of the upper leg
# 2AAC + VS1 SMALLER THAN OR slanted EQUAL
# 2AAD + VS1 LARGER THAN OR slanted EQUAL
# 2ACB + VS1 SUBSET OF ABOVE NOT EQUAL TO - variant with stroke through bottom members
# 2ACC + VS1 SUPERSET OF ABOVE NOT EQUAL TO - variant with stroke through bottom members