216 lines
5.9 KiB
Python
216 lines
5.9 KiB
Python
import collections
|
|
from functools import partial
|
|
import string
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import Series
|
|
import pandas._testing as tm
|
|
from pandas.core import ops
|
|
import pandas.core.common as com
|
|
from pandas.util.version import Version
|
|
|
|
|
|
def test_get_callable_name():
|
|
getname = com.get_callable_name
|
|
|
|
def fn(x):
|
|
return x
|
|
|
|
lambda_ = lambda x: x
|
|
part1 = partial(fn)
|
|
part2 = partial(part1)
|
|
|
|
class somecall:
|
|
def __call__(self):
|
|
# This shouldn't actually get called below; somecall.__init__
|
|
# should.
|
|
raise NotImplementedError
|
|
|
|
assert getname(fn) == "fn"
|
|
assert getname(lambda_)
|
|
assert getname(part1) == "fn"
|
|
assert getname(part2) == "fn"
|
|
assert getname(somecall()) == "somecall"
|
|
assert getname(1) is None
|
|
|
|
|
|
def test_any_none():
|
|
assert com.any_none(1, 2, 3, None)
|
|
assert not com.any_none(1, 2, 3, 4)
|
|
|
|
|
|
def test_all_not_none():
|
|
assert com.all_not_none(1, 2, 3, 4)
|
|
assert not com.all_not_none(1, 2, 3, None)
|
|
assert not com.all_not_none(None, None, None, None)
|
|
|
|
|
|
def test_random_state():
|
|
import numpy.random as npr
|
|
|
|
# Check with seed
|
|
state = com.random_state(5)
|
|
assert state.uniform() == npr.RandomState(5).uniform()
|
|
|
|
# Check with random state object
|
|
state2 = npr.RandomState(10)
|
|
assert com.random_state(state2).uniform() == npr.RandomState(10).uniform()
|
|
|
|
# check with no arg random state
|
|
assert com.random_state() is np.random
|
|
|
|
# check array-like
|
|
# GH32503
|
|
state_arr_like = npr.randint(0, 2**31, size=624, dtype="uint32")
|
|
assert (
|
|
com.random_state(state_arr_like).uniform()
|
|
== npr.RandomState(state_arr_like).uniform()
|
|
)
|
|
|
|
# Check BitGenerators
|
|
# GH32503
|
|
assert (
|
|
com.random_state(npr.MT19937(3)).uniform()
|
|
== npr.RandomState(npr.MT19937(3)).uniform()
|
|
)
|
|
assert (
|
|
com.random_state(npr.PCG64(11)).uniform()
|
|
== npr.RandomState(npr.PCG64(11)).uniform()
|
|
)
|
|
|
|
# Error for floats or strings
|
|
msg = (
|
|
"random_state must be an integer, array-like, a BitGenerator, Generator, "
|
|
"a numpy RandomState, or None"
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
com.random_state("test")
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
com.random_state(5.5)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"left, right, expected",
|
|
[
|
|
(Series([1], name="x"), Series([2], name="x"), "x"),
|
|
(Series([1], name="x"), Series([2], name="y"), None),
|
|
(Series([1]), Series([2], name="x"), None),
|
|
(Series([1], name="x"), Series([2]), None),
|
|
(Series([1], name="x"), [2], "x"),
|
|
([1], Series([2], name="y"), "y"),
|
|
# matching NAs
|
|
(Series([1], name=np.nan), pd.Index([], name=np.nan), np.nan),
|
|
(Series([1], name=np.nan), pd.Index([], name=pd.NaT), None),
|
|
(Series([1], name=pd.NA), pd.Index([], name=pd.NA), pd.NA),
|
|
# tuple name GH#39757
|
|
(
|
|
Series([1], name=np.int64(1)),
|
|
pd.Index([], name=(np.int64(1), np.int64(2))),
|
|
None,
|
|
),
|
|
(
|
|
Series([1], name=(np.int64(1), np.int64(2))),
|
|
pd.Index([], name=(np.int64(1), np.int64(2))),
|
|
(np.int64(1), np.int64(2)),
|
|
),
|
|
pytest.param(
|
|
Series([1], name=(np.float64("nan"), np.int64(2))),
|
|
pd.Index([], name=(np.float64("nan"), np.int64(2))),
|
|
(np.float64("nan"), np.int64(2)),
|
|
marks=pytest.mark.xfail(
|
|
reason="Not checking for matching NAs inside tuples."
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_maybe_match_name(left, right, expected):
|
|
res = ops.common._maybe_match_name(left, right)
|
|
assert res is expected or res == expected
|
|
|
|
|
|
def test_standardize_mapping():
|
|
# No uninitialized defaultdicts
|
|
msg = r"to_dict\(\) only accepts initialized defaultdicts"
|
|
with pytest.raises(TypeError, match=msg):
|
|
com.standardize_mapping(collections.defaultdict)
|
|
|
|
# No non-mapping subtypes, instance
|
|
msg = "unsupported type: <class 'list'>"
|
|
with pytest.raises(TypeError, match=msg):
|
|
com.standardize_mapping([])
|
|
|
|
# No non-mapping subtypes, class
|
|
with pytest.raises(TypeError, match=msg):
|
|
com.standardize_mapping(list)
|
|
|
|
fill = {"bad": "data"}
|
|
assert com.standardize_mapping(fill) == dict
|
|
|
|
# Convert instance to type
|
|
assert com.standardize_mapping({}) == dict
|
|
|
|
dd = collections.defaultdict(list)
|
|
assert isinstance(com.standardize_mapping(dd), partial)
|
|
|
|
|
|
def test_git_version():
|
|
# GH 21295
|
|
git_version = pd.__git_version__
|
|
assert len(git_version) == 40
|
|
assert all(c in string.hexdigits for c in git_version)
|
|
|
|
|
|
def test_version_tag():
|
|
version = Version(pd.__version__)
|
|
try:
|
|
version > Version("0.0.1")
|
|
except TypeError:
|
|
raise ValueError(
|
|
"No git tags exist, please sync tags between upstream and your repo"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"obj", [(obj,) for obj in pd.__dict__.values() if callable(obj)]
|
|
)
|
|
def test_serializable(obj):
|
|
# GH 35611
|
|
unpickled = tm.round_trip_pickle(obj)
|
|
assert type(obj) == type(unpickled)
|
|
|
|
|
|
class TestIsBoolIndexer:
|
|
def test_non_bool_array_with_na(self):
|
|
# in particular, this should not raise
|
|
arr = np.array(["A", "B", np.nan], dtype=object)
|
|
assert not com.is_bool_indexer(arr)
|
|
|
|
def test_list_subclass(self):
|
|
# GH#42433
|
|
|
|
class MyList(list):
|
|
pass
|
|
|
|
val = MyList(["a"])
|
|
|
|
assert not com.is_bool_indexer(val)
|
|
|
|
val = MyList([True])
|
|
assert com.is_bool_indexer(val)
|
|
|
|
def test_frozenlist(self):
|
|
# GH#42461
|
|
data = {"col1": [1, 2], "col2": [3, 4]}
|
|
df = pd.DataFrame(data=data)
|
|
|
|
frozen = df.index.names[1:]
|
|
assert not com.is_bool_indexer(frozen)
|
|
|
|
result = df[frozen]
|
|
expected = df[[]]
|
|
tm.assert_frame_equal(result, expected)
|