usse/funda-scraper/venv/lib/python3.10/site-packages/cffi/recompiler.py

1582 lines
63 KiB
Python

import os, sys, io
from . import ffiplatform, model
from .error import VerificationError
from .cffi_opcode import *
VERSION_BASE = 0x2601
VERSION_EMBEDDED = 0x2701
VERSION_CHAR16CHAR32 = 0x2801
USE_LIMITED_API = (sys.platform != 'win32' or sys.version_info < (3, 0) or
sys.version_info >= (3, 5))
class GlobalExpr:
def __init__(self, name, address, type_op, size=0, check_value=0):
self.name = name
self.address = address
self.type_op = type_op
self.size = size
self.check_value = check_value
def as_c_expr(self):
return ' { "%s", (void *)%s, %s, (void *)%s },' % (
self.name, self.address, self.type_op.as_c_expr(), self.size)
def as_python_expr(self):
return "b'%s%s',%d" % (self.type_op.as_python_bytes(), self.name,
self.check_value)
class FieldExpr:
def __init__(self, name, field_offset, field_size, fbitsize, field_type_op):
self.name = name
self.field_offset = field_offset
self.field_size = field_size
self.fbitsize = fbitsize
self.field_type_op = field_type_op
def as_c_expr(self):
spaces = " " * len(self.name)
return (' { "%s", %s,\n' % (self.name, self.field_offset) +
' %s %s,\n' % (spaces, self.field_size) +
' %s %s },' % (spaces, self.field_type_op.as_c_expr()))
def as_python_expr(self):
raise NotImplementedError
def as_field_python_expr(self):
if self.field_type_op.op == OP_NOOP:
size_expr = ''
elif self.field_type_op.op == OP_BITFIELD:
size_expr = format_four_bytes(self.fbitsize)
else:
raise NotImplementedError
return "b'%s%s%s'" % (self.field_type_op.as_python_bytes(),
size_expr,
self.name)
class StructUnionExpr:
def __init__(self, name, type_index, flags, size, alignment, comment,
first_field_index, c_fields):
self.name = name
self.type_index = type_index
self.flags = flags
self.size = size
self.alignment = alignment
self.comment = comment
self.first_field_index = first_field_index
self.c_fields = c_fields
def as_c_expr(self):
return (' { "%s", %d, %s,' % (self.name, self.type_index, self.flags)
+ '\n %s, %s, ' % (self.size, self.alignment)
+ '%d, %d ' % (self.first_field_index, len(self.c_fields))
+ ('/* %s */ ' % self.comment if self.comment else '')
+ '},')
def as_python_expr(self):
flags = eval(self.flags, G_FLAGS)
fields_expr = [c_field.as_field_python_expr()
for c_field in self.c_fields]
return "(b'%s%s%s',%s)" % (
format_four_bytes(self.type_index),
format_four_bytes(flags),
self.name,
','.join(fields_expr))
class EnumExpr:
def __init__(self, name, type_index, size, signed, allenums):
self.name = name
self.type_index = type_index
self.size = size
self.signed = signed
self.allenums = allenums
def as_c_expr(self):
return (' { "%s", %d, _cffi_prim_int(%s, %s),\n'
' "%s" },' % (self.name, self.type_index,
self.size, self.signed, self.allenums))
def as_python_expr(self):
prim_index = {
(1, 0): PRIM_UINT8, (1, 1): PRIM_INT8,
(2, 0): PRIM_UINT16, (2, 1): PRIM_INT16,
(4, 0): PRIM_UINT32, (4, 1): PRIM_INT32,
(8, 0): PRIM_UINT64, (8, 1): PRIM_INT64,
}[self.size, self.signed]
return "b'%s%s%s\\x00%s'" % (format_four_bytes(self.type_index),
format_four_bytes(prim_index),
self.name, self.allenums)
class TypenameExpr:
def __init__(self, name, type_index):
self.name = name
self.type_index = type_index
def as_c_expr(self):
return ' { "%s", %d },' % (self.name, self.type_index)
def as_python_expr(self):
return "b'%s%s'" % (format_four_bytes(self.type_index), self.name)
# ____________________________________________________________
class Recompiler:
_num_externpy = 0
def __init__(self, ffi, module_name, target_is_python=False):
self.ffi = ffi
self.module_name = module_name
self.target_is_python = target_is_python
self._version = VERSION_BASE
def needs_version(self, ver):
self._version = max(self._version, ver)
def collect_type_table(self):
self._typesdict = {}
self._generate("collecttype")
#
all_decls = sorted(self._typesdict, key=str)
#
# prepare all FUNCTION bytecode sequences first
self.cffi_types = []
for tp in all_decls:
if tp.is_raw_function:
assert self._typesdict[tp] is None
self._typesdict[tp] = len(self.cffi_types)
self.cffi_types.append(tp) # placeholder
for tp1 in tp.args:
assert isinstance(tp1, (model.VoidType,
model.BasePrimitiveType,
model.PointerType,
model.StructOrUnionOrEnum,
model.FunctionPtrType))
if self._typesdict[tp1] is None:
self._typesdict[tp1] = len(self.cffi_types)
self.cffi_types.append(tp1) # placeholder
self.cffi_types.append('END') # placeholder
#
# prepare all OTHER bytecode sequences
for tp in all_decls:
if not tp.is_raw_function and self._typesdict[tp] is None:
self._typesdict[tp] = len(self.cffi_types)
self.cffi_types.append(tp) # placeholder
if tp.is_array_type and tp.length is not None:
self.cffi_types.append('LEN') # placeholder
assert None not in self._typesdict.values()
#
# collect all structs and unions and enums
self._struct_unions = {}
self._enums = {}
for tp in all_decls:
if isinstance(tp, model.StructOrUnion):
self._struct_unions[tp] = None
elif isinstance(tp, model.EnumType):
self._enums[tp] = None
for i, tp in enumerate(sorted(self._struct_unions,
key=lambda tp: tp.name)):
self._struct_unions[tp] = i
for i, tp in enumerate(sorted(self._enums,
key=lambda tp: tp.name)):
self._enums[tp] = i
#
# emit all bytecode sequences now
for tp in all_decls:
method = getattr(self, '_emit_bytecode_' + tp.__class__.__name__)
method(tp, self._typesdict[tp])
#
# consistency check
for op in self.cffi_types:
assert isinstance(op, CffiOp)
self.cffi_types = tuple(self.cffi_types) # don't change any more
def _enum_fields(self, tp):
# When producing C, expand all anonymous struct/union fields.
# That's necessary to have C code checking the offsets of the
# individual fields contained in them. When producing Python,
# don't do it and instead write it like it is, with the
# corresponding fields having an empty name. Empty names are
# recognized at runtime when we import the generated Python
# file.
expand_anonymous_struct_union = not self.target_is_python
return tp.enumfields(expand_anonymous_struct_union)
def _do_collect_type(self, tp):
if not isinstance(tp, model.BaseTypeByIdentity):
if isinstance(tp, tuple):
for x in tp:
self._do_collect_type(x)
return
if tp not in self._typesdict:
self._typesdict[tp] = None
if isinstance(tp, model.FunctionPtrType):
self._do_collect_type(tp.as_raw_function())
elif isinstance(tp, model.StructOrUnion):
if tp.fldtypes is not None and (
tp not in self.ffi._parser._included_declarations):
for name1, tp1, _, _ in self._enum_fields(tp):
self._do_collect_type(self._field_type(tp, name1, tp1))
else:
for _, x in tp._get_items():
self._do_collect_type(x)
def _generate(self, step_name):
lst = self.ffi._parser._declarations.items()
for name, (tp, quals) in sorted(lst):
kind, realname = name.split(' ', 1)
try:
method = getattr(self, '_generate_cpy_%s_%s' % (kind,
step_name))
except AttributeError:
raise VerificationError(
"not implemented in recompile(): %r" % name)
try:
self._current_quals = quals
method(tp, realname)
except Exception as e:
model.attach_exception_info(e, name)
raise
# ----------
ALL_STEPS = ["global", "field", "struct_union", "enum", "typename"]
def collect_step_tables(self):
# collect the declarations for '_cffi_globals', '_cffi_typenames', etc.
self._lsts = {}
for step_name in self.ALL_STEPS:
self._lsts[step_name] = []
self._seen_struct_unions = set()
self._generate("ctx")
self._add_missing_struct_unions()
#
for step_name in self.ALL_STEPS:
lst = self._lsts[step_name]
if step_name != "field":
lst.sort(key=lambda entry: entry.name)
self._lsts[step_name] = tuple(lst) # don't change any more
#
# check for a possible internal inconsistency: _cffi_struct_unions
# should have been generated with exactly self._struct_unions
lst = self._lsts["struct_union"]
for tp, i in self._struct_unions.items():
assert i < len(lst)
assert lst[i].name == tp.name
assert len(lst) == len(self._struct_unions)
# same with enums
lst = self._lsts["enum"]
for tp, i in self._enums.items():
assert i < len(lst)
assert lst[i].name == tp.name
assert len(lst) == len(self._enums)
# ----------
def _prnt(self, what=''):
self._f.write(what + '\n')
def write_source_to_f(self, f, preamble):
if self.target_is_python:
assert preamble is None
self.write_py_source_to_f(f)
else:
assert preamble is not None
self.write_c_source_to_f(f, preamble)
def _rel_readlines(self, filename):
g = open(os.path.join(os.path.dirname(__file__), filename), 'r')
lines = g.readlines()
g.close()
return lines
def write_c_source_to_f(self, f, preamble):
self._f = f
prnt = self._prnt
if self.ffi._embedding is not None:
prnt('#define _CFFI_USE_EMBEDDING')
if not USE_LIMITED_API:
prnt('#define _CFFI_NO_LIMITED_API')
#
# first the '#include' (actually done by inlining the file's content)
lines = self._rel_readlines('_cffi_include.h')
i = lines.index('#include "parse_c_type.h"\n')
lines[i:i+1] = self._rel_readlines('parse_c_type.h')
prnt(''.join(lines))
#
# if we have ffi._embedding != None, we give it here as a macro
# and include an extra file
base_module_name = self.module_name.split('.')[-1]
if self.ffi._embedding is not None:
prnt('#define _CFFI_MODULE_NAME "%s"' % (self.module_name,))
prnt('static const char _CFFI_PYTHON_STARTUP_CODE[] = {')
self._print_string_literal_in_array(self.ffi._embedding)
prnt('0 };')
prnt('#ifdef PYPY_VERSION')
prnt('# define _CFFI_PYTHON_STARTUP_FUNC _cffi_pypyinit_%s' % (
base_module_name,))
prnt('#elif PY_MAJOR_VERSION >= 3')
prnt('# define _CFFI_PYTHON_STARTUP_FUNC PyInit_%s' % (
base_module_name,))
prnt('#else')
prnt('# define _CFFI_PYTHON_STARTUP_FUNC init%s' % (
base_module_name,))
prnt('#endif')
lines = self._rel_readlines('_embedding.h')
i = lines.index('#include "_cffi_errors.h"\n')
lines[i:i+1] = self._rel_readlines('_cffi_errors.h')
prnt(''.join(lines))
self.needs_version(VERSION_EMBEDDED)
#
# then paste the C source given by the user, verbatim.
prnt('/************************************************************/')
prnt()
prnt(preamble)
prnt()
prnt('/************************************************************/')
prnt()
#
# the declaration of '_cffi_types'
prnt('static void *_cffi_types[] = {')
typeindex2type = dict([(i, tp) for (tp, i) in self._typesdict.items()])
for i, op in enumerate(self.cffi_types):
comment = ''
if i in typeindex2type:
comment = ' // ' + typeindex2type[i]._get_c_name()
prnt('/* %2d */ %s,%s' % (i, op.as_c_expr(), comment))
if not self.cffi_types:
prnt(' 0')
prnt('};')
prnt()
#
# call generate_cpy_xxx_decl(), for every xxx found from
# ffi._parser._declarations. This generates all the functions.
self._seen_constants = set()
self._generate("decl")
#
# the declaration of '_cffi_globals' and '_cffi_typenames'
nums = {}
for step_name in self.ALL_STEPS:
lst = self._lsts[step_name]
nums[step_name] = len(lst)
if nums[step_name] > 0:
prnt('static const struct _cffi_%s_s _cffi_%ss[] = {' % (
step_name, step_name))
for entry in lst:
prnt(entry.as_c_expr())
prnt('};')
prnt()
#
# the declaration of '_cffi_includes'
if self.ffi._included_ffis:
prnt('static const char * const _cffi_includes[] = {')
for ffi_to_include in self.ffi._included_ffis:
try:
included_module_name, included_source = (
ffi_to_include._assigned_source[:2])
except AttributeError:
raise VerificationError(
"ffi object %r includes %r, but the latter has not "
"been prepared with set_source()" % (
self.ffi, ffi_to_include,))
if included_source is None:
raise VerificationError(
"not implemented yet: ffi.include() of a Python-based "
"ffi inside a C-based ffi")
prnt(' "%s",' % (included_module_name,))
prnt(' NULL')
prnt('};')
prnt()
#
# the declaration of '_cffi_type_context'
prnt('static const struct _cffi_type_context_s _cffi_type_context = {')
prnt(' _cffi_types,')
for step_name in self.ALL_STEPS:
if nums[step_name] > 0:
prnt(' _cffi_%ss,' % step_name)
else:
prnt(' NULL, /* no %ss */' % step_name)
for step_name in self.ALL_STEPS:
if step_name != "field":
prnt(' %d, /* num_%ss */' % (nums[step_name], step_name))
if self.ffi._included_ffis:
prnt(' _cffi_includes,')
else:
prnt(' NULL, /* no includes */')
prnt(' %d, /* num_types */' % (len(self.cffi_types),))
flags = 0
if self._num_externpy > 0 or self.ffi._embedding is not None:
flags |= 1 # set to mean that we use extern "Python"
prnt(' %d, /* flags */' % flags)
prnt('};')
prnt()
#
# the init function
prnt('#ifdef __GNUC__')
prnt('# pragma GCC visibility push(default) /* for -fvisibility= */')
prnt('#endif')
prnt()
prnt('#ifdef PYPY_VERSION')
prnt('PyMODINIT_FUNC')
prnt('_cffi_pypyinit_%s(const void *p[])' % (base_module_name,))
prnt('{')
if flags & 1:
prnt(' if (((intptr_t)p[0]) >= 0x0A03) {')
prnt(' _cffi_call_python_org = '
'(void(*)(struct _cffi_externpy_s *, char *))p[1];')
prnt(' }')
prnt(' p[0] = (const void *)0x%x;' % self._version)
prnt(' p[1] = &_cffi_type_context;')
prnt('#if PY_MAJOR_VERSION >= 3')
prnt(' return NULL;')
prnt('#endif')
prnt('}')
# on Windows, distutils insists on putting init_cffi_xyz in
# 'export_symbols', so instead of fighting it, just give up and
# give it one
prnt('# ifdef _MSC_VER')
prnt(' PyMODINIT_FUNC')
prnt('# if PY_MAJOR_VERSION >= 3')
prnt(' PyInit_%s(void) { return NULL; }' % (base_module_name,))
prnt('# else')
prnt(' init%s(void) { }' % (base_module_name,))
prnt('# endif')
prnt('# endif')
prnt('#elif PY_MAJOR_VERSION >= 3')
prnt('PyMODINIT_FUNC')
prnt('PyInit_%s(void)' % (base_module_name,))
prnt('{')
prnt(' return _cffi_init("%s", 0x%x, &_cffi_type_context);' % (
self.module_name, self._version))
prnt('}')
prnt('#else')
prnt('PyMODINIT_FUNC')
prnt('init%s(void)' % (base_module_name,))
prnt('{')
prnt(' _cffi_init("%s", 0x%x, &_cffi_type_context);' % (
self.module_name, self._version))
prnt('}')
prnt('#endif')
prnt()
prnt('#ifdef __GNUC__')
prnt('# pragma GCC visibility pop')
prnt('#endif')
self._version = None
def _to_py(self, x):
if isinstance(x, str):
return "b'%s'" % (x,)
if isinstance(x, (list, tuple)):
rep = [self._to_py(item) for item in x]
if len(rep) == 1:
rep.append('')
return "(%s)" % (','.join(rep),)
return x.as_python_expr() # Py2: unicode unexpected; Py3: bytes unexp.
def write_py_source_to_f(self, f):
self._f = f
prnt = self._prnt
#
# header
prnt("# auto-generated file")
prnt("import _cffi_backend")
#
# the 'import' of the included ffis
num_includes = len(self.ffi._included_ffis or ())
for i in range(num_includes):
ffi_to_include = self.ffi._included_ffis[i]
try:
included_module_name, included_source = (
ffi_to_include._assigned_source[:2])
except AttributeError:
raise VerificationError(
"ffi object %r includes %r, but the latter has not "
"been prepared with set_source()" % (
self.ffi, ffi_to_include,))
if included_source is not None:
raise VerificationError(
"not implemented yet: ffi.include() of a C-based "
"ffi inside a Python-based ffi")
prnt('from %s import ffi as _ffi%d' % (included_module_name, i))
prnt()
prnt("ffi = _cffi_backend.FFI('%s'," % (self.module_name,))
prnt(" _version = 0x%x," % (self._version,))
self._version = None
#
# the '_types' keyword argument
self.cffi_types = tuple(self.cffi_types) # don't change any more
types_lst = [op.as_python_bytes() for op in self.cffi_types]
prnt(' _types = %s,' % (self._to_py(''.join(types_lst)),))
typeindex2type = dict([(i, tp) for (tp, i) in self._typesdict.items()])
#
# the keyword arguments from ALL_STEPS
for step_name in self.ALL_STEPS:
lst = self._lsts[step_name]
if len(lst) > 0 and step_name != "field":
prnt(' _%ss = %s,' % (step_name, self._to_py(lst)))
#
# the '_includes' keyword argument
if num_includes > 0:
prnt(' _includes = (%s,),' % (
', '.join(['_ffi%d' % i for i in range(num_includes)]),))
#
# the footer
prnt(')')
# ----------
def _gettypenum(self, type):
# a KeyError here is a bug. please report it! :-)
return self._typesdict[type]
def _convert_funcarg_to_c(self, tp, fromvar, tovar, errcode):
extraarg = ''
if isinstance(tp, model.BasePrimitiveType) and not tp.is_complex_type():
if tp.is_integer_type() and tp.name != '_Bool':
converter = '_cffi_to_c_int'
extraarg = ', %s' % tp.name
elif isinstance(tp, model.UnknownFloatType):
# don't check with is_float_type(): it may be a 'long
# double' here, and _cffi_to_c_double would loose precision
converter = '(%s)_cffi_to_c_double' % (tp.get_c_name(''),)
else:
cname = tp.get_c_name('')
converter = '(%s)_cffi_to_c_%s' % (cname,
tp.name.replace(' ', '_'))
if cname in ('char16_t', 'char32_t'):
self.needs_version(VERSION_CHAR16CHAR32)
errvalue = '-1'
#
elif isinstance(tp, model.PointerType):
self._convert_funcarg_to_c_ptr_or_array(tp, fromvar,
tovar, errcode)
return
#
elif (isinstance(tp, model.StructOrUnionOrEnum) or
isinstance(tp, model.BasePrimitiveType)):
# a struct (not a struct pointer) as a function argument;
# or, a complex (the same code works)
self._prnt(' if (_cffi_to_c((char *)&%s, _cffi_type(%d), %s) < 0)'
% (tovar, self._gettypenum(tp), fromvar))
self._prnt(' %s;' % errcode)
return
#
elif isinstance(tp, model.FunctionPtrType):
converter = '(%s)_cffi_to_c_pointer' % tp.get_c_name('')
extraarg = ', _cffi_type(%d)' % self._gettypenum(tp)
errvalue = 'NULL'
#
else:
raise NotImplementedError(tp)
#
self._prnt(' %s = %s(%s%s);' % (tovar, converter, fromvar, extraarg))
self._prnt(' if (%s == (%s)%s && PyErr_Occurred())' % (
tovar, tp.get_c_name(''), errvalue))
self._prnt(' %s;' % errcode)
def _extra_local_variables(self, tp, localvars, freelines):
if isinstance(tp, model.PointerType):
localvars.add('Py_ssize_t datasize')
localvars.add('struct _cffi_freeme_s *large_args_free = NULL')
freelines.add('if (large_args_free != NULL)'
' _cffi_free_array_arguments(large_args_free);')
def _convert_funcarg_to_c_ptr_or_array(self, tp, fromvar, tovar, errcode):
self._prnt(' datasize = _cffi_prepare_pointer_call_argument(')
self._prnt(' _cffi_type(%d), %s, (char **)&%s);' % (
self._gettypenum(tp), fromvar, tovar))
self._prnt(' if (datasize != 0) {')
self._prnt(' %s = ((size_t)datasize) <= 640 ? '
'(%s)alloca((size_t)datasize) : NULL;' % (
tovar, tp.get_c_name('')))
self._prnt(' if (_cffi_convert_array_argument(_cffi_type(%d), %s, '
'(char **)&%s,' % (self._gettypenum(tp), fromvar, tovar))
self._prnt(' datasize, &large_args_free) < 0)')
self._prnt(' %s;' % errcode)
self._prnt(' }')
def _convert_expr_from_c(self, tp, var, context):
if isinstance(tp, model.BasePrimitiveType):
if tp.is_integer_type() and tp.name != '_Bool':
return '_cffi_from_c_int(%s, %s)' % (var, tp.name)
elif isinstance(tp, model.UnknownFloatType):
return '_cffi_from_c_double(%s)' % (var,)
elif tp.name != 'long double' and not tp.is_complex_type():
cname = tp.name.replace(' ', '_')
if cname in ('char16_t', 'char32_t'):
self.needs_version(VERSION_CHAR16CHAR32)
return '_cffi_from_c_%s(%s)' % (cname, var)
else:
return '_cffi_from_c_deref((char *)&%s, _cffi_type(%d))' % (
var, self._gettypenum(tp))
elif isinstance(tp, (model.PointerType, model.FunctionPtrType)):
return '_cffi_from_c_pointer((char *)%s, _cffi_type(%d))' % (
var, self._gettypenum(tp))
elif isinstance(tp, model.ArrayType):
return '_cffi_from_c_pointer((char *)%s, _cffi_type(%d))' % (
var, self._gettypenum(model.PointerType(tp.item)))
elif isinstance(tp, model.StructOrUnion):
if tp.fldnames is None:
raise TypeError("'%s' is used as %s, but is opaque" % (
tp._get_c_name(), context))
return '_cffi_from_c_struct((char *)&%s, _cffi_type(%d))' % (
var, self._gettypenum(tp))
elif isinstance(tp, model.EnumType):
return '_cffi_from_c_deref((char *)&%s, _cffi_type(%d))' % (
var, self._gettypenum(tp))
else:
raise NotImplementedError(tp)
# ----------
# typedefs
def _typedef_type(self, tp, name):
return self._global_type(tp, "(*(%s *)0)" % (name,))
def _generate_cpy_typedef_collecttype(self, tp, name):
self._do_collect_type(self._typedef_type(tp, name))
def _generate_cpy_typedef_decl(self, tp, name):
pass
def _typedef_ctx(self, tp, name):
type_index = self._typesdict[tp]
self._lsts["typename"].append(TypenameExpr(name, type_index))
def _generate_cpy_typedef_ctx(self, tp, name):
tp = self._typedef_type(tp, name)
self._typedef_ctx(tp, name)
if getattr(tp, "origin", None) == "unknown_type":
self._struct_ctx(tp, tp.name, approxname=None)
elif isinstance(tp, model.NamedPointerType):
self._struct_ctx(tp.totype, tp.totype.name, approxname=tp.name,
named_ptr=tp)
# ----------
# function declarations
def _generate_cpy_function_collecttype(self, tp, name):
self._do_collect_type(tp.as_raw_function())
if tp.ellipsis and not self.target_is_python:
self._do_collect_type(tp)
def _generate_cpy_function_decl(self, tp, name):
assert not self.target_is_python
assert isinstance(tp, model.FunctionPtrType)
if tp.ellipsis:
# cannot support vararg functions better than this: check for its
# exact type (including the fixed arguments), and build it as a
# constant function pointer (no CPython wrapper)
self._generate_cpy_constant_decl(tp, name)
return
prnt = self._prnt
numargs = len(tp.args)
if numargs == 0:
argname = 'noarg'
elif numargs == 1:
argname = 'arg0'
else:
argname = 'args'
#
# ------------------------------
# the 'd' version of the function, only for addressof(lib, 'func')
arguments = []
call_arguments = []
context = 'argument of %s' % name
for i, type in enumerate(tp.args):
arguments.append(type.get_c_name(' x%d' % i, context))
call_arguments.append('x%d' % i)
repr_arguments = ', '.join(arguments)
repr_arguments = repr_arguments or 'void'
if tp.abi:
abi = tp.abi + ' '
else:
abi = ''
name_and_arguments = '%s_cffi_d_%s(%s)' % (abi, name, repr_arguments)
prnt('static %s' % (tp.result.get_c_name(name_and_arguments),))
prnt('{')
call_arguments = ', '.join(call_arguments)
result_code = 'return '
if isinstance(tp.result, model.VoidType):
result_code = ''
prnt(' %s%s(%s);' % (result_code, name, call_arguments))
prnt('}')
#
prnt('#ifndef PYPY_VERSION') # ------------------------------
#
prnt('static PyObject *')
prnt('_cffi_f_%s(PyObject *self, PyObject *%s)' % (name, argname))
prnt('{')
#
context = 'argument of %s' % name
for i, type in enumerate(tp.args):
arg = type.get_c_name(' x%d' % i, context)
prnt(' %s;' % arg)
#
localvars = set()
freelines = set()
for type in tp.args:
self._extra_local_variables(type, localvars, freelines)
for decl in sorted(localvars):
prnt(' %s;' % (decl,))
#
if not isinstance(tp.result, model.VoidType):
result_code = 'result = '
context = 'result of %s' % name
result_decl = ' %s;' % tp.result.get_c_name(' result', context)
prnt(result_decl)
prnt(' PyObject *pyresult;')
else:
result_decl = None
result_code = ''
#
if len(tp.args) > 1:
rng = range(len(tp.args))
for i in rng:
prnt(' PyObject *arg%d;' % i)
prnt()
prnt(' if (!PyArg_UnpackTuple(args, "%s", %d, %d, %s))' % (
name, len(rng), len(rng),
', '.join(['&arg%d' % i for i in rng])))
prnt(' return NULL;')
prnt()
#
for i, type in enumerate(tp.args):
self._convert_funcarg_to_c(type, 'arg%d' % i, 'x%d' % i,
'return NULL')
prnt()
#
prnt(' Py_BEGIN_ALLOW_THREADS')
prnt(' _cffi_restore_errno();')
call_arguments = ['x%d' % i for i in range(len(tp.args))]
call_arguments = ', '.join(call_arguments)
prnt(' { %s%s(%s); }' % (result_code, name, call_arguments))
prnt(' _cffi_save_errno();')
prnt(' Py_END_ALLOW_THREADS')
prnt()
#
prnt(' (void)self; /* unused */')
if numargs == 0:
prnt(' (void)noarg; /* unused */')
if result_code:
prnt(' pyresult = %s;' %
self._convert_expr_from_c(tp.result, 'result', 'result type'))
for freeline in freelines:
prnt(' ' + freeline)
prnt(' return pyresult;')
else:
for freeline in freelines:
prnt(' ' + freeline)
prnt(' Py_INCREF(Py_None);')
prnt(' return Py_None;')
prnt('}')
#
prnt('#else') # ------------------------------
#
# the PyPy version: need to replace struct/union arguments with
# pointers, and if the result is a struct/union, insert a first
# arg that is a pointer to the result. We also do that for
# complex args and return type.
def need_indirection(type):
return (isinstance(type, model.StructOrUnion) or
(isinstance(type, model.PrimitiveType) and
type.is_complex_type()))
difference = False
arguments = []
call_arguments = []
context = 'argument of %s' % name
for i, type in enumerate(tp.args):
indirection = ''
if need_indirection(type):
indirection = '*'
difference = True
arg = type.get_c_name(' %sx%d' % (indirection, i), context)
arguments.append(arg)
call_arguments.append('%sx%d' % (indirection, i))
tp_result = tp.result
if need_indirection(tp_result):
context = 'result of %s' % name
arg = tp_result.get_c_name(' *result', context)
arguments.insert(0, arg)
tp_result = model.void_type
result_decl = None
result_code = '*result = '
difference = True
if difference:
repr_arguments = ', '.join(arguments)
repr_arguments = repr_arguments or 'void'
name_and_arguments = '%s_cffi_f_%s(%s)' % (abi, name,
repr_arguments)
prnt('static %s' % (tp_result.get_c_name(name_and_arguments),))
prnt('{')
if result_decl:
prnt(result_decl)
call_arguments = ', '.join(call_arguments)
prnt(' { %s%s(%s); }' % (result_code, name, call_arguments))
if result_decl:
prnt(' return result;')
prnt('}')
else:
prnt('# define _cffi_f_%s _cffi_d_%s' % (name, name))
#
prnt('#endif') # ------------------------------
prnt()
def _generate_cpy_function_ctx(self, tp, name):
if tp.ellipsis and not self.target_is_python:
self._generate_cpy_constant_ctx(tp, name)
return
type_index = self._typesdict[tp.as_raw_function()]
numargs = len(tp.args)
if self.target_is_python:
meth_kind = OP_DLOPEN_FUNC
elif numargs == 0:
meth_kind = OP_CPYTHON_BLTN_N # 'METH_NOARGS'
elif numargs == 1:
meth_kind = OP_CPYTHON_BLTN_O # 'METH_O'
else:
meth_kind = OP_CPYTHON_BLTN_V # 'METH_VARARGS'
self._lsts["global"].append(
GlobalExpr(name, '_cffi_f_%s' % name,
CffiOp(meth_kind, type_index),
size='_cffi_d_%s' % name))
# ----------
# named structs or unions
def _field_type(self, tp_struct, field_name, tp_field):
if isinstance(tp_field, model.ArrayType):
actual_length = tp_field.length
if actual_length == '...':
ptr_struct_name = tp_struct.get_c_name('*')
actual_length = '_cffi_array_len(((%s)0)->%s)' % (
ptr_struct_name, field_name)
tp_item = self._field_type(tp_struct, '%s[0]' % field_name,
tp_field.item)
tp_field = model.ArrayType(tp_item, actual_length)
return tp_field
def _struct_collecttype(self, tp):
self._do_collect_type(tp)
if self.target_is_python:
# also requires nested anon struct/unions in ABI mode, recursively
for fldtype in tp.anonymous_struct_fields():
self._struct_collecttype(fldtype)
def _struct_decl(self, tp, cname, approxname):
if tp.fldtypes is None:
return
prnt = self._prnt
checkfuncname = '_cffi_checkfld_%s' % (approxname,)
prnt('_CFFI_UNUSED_FN')
prnt('static void %s(%s *p)' % (checkfuncname, cname))
prnt('{')
prnt(' /* only to generate compile-time warnings or errors */')
prnt(' (void)p;')
for fname, ftype, fbitsize, fqual in self._enum_fields(tp):
try:
if ftype.is_integer_type() or fbitsize >= 0:
# accept all integers, but complain on float or double
if fname != '':
prnt(" (void)((p->%s) | 0); /* check that '%s.%s' is "
"an integer */" % (fname, cname, fname))
continue
# only accept exactly the type declared, except that '[]'
# is interpreted as a '*' and so will match any array length.
# (It would also match '*', but that's harder to detect...)
while (isinstance(ftype, model.ArrayType)
and (ftype.length is None or ftype.length == '...')):
ftype = ftype.item
fname = fname + '[0]'
prnt(' { %s = &p->%s; (void)tmp; }' % (
ftype.get_c_name('*tmp', 'field %r'%fname, quals=fqual),
fname))
except VerificationError as e:
prnt(' /* %s */' % str(e)) # cannot verify it, ignore
prnt('}')
prnt('struct _cffi_align_%s { char x; %s y; };' % (approxname, cname))
prnt()
def _struct_ctx(self, tp, cname, approxname, named_ptr=None):
type_index = self._typesdict[tp]
reason_for_not_expanding = None
flags = []
if isinstance(tp, model.UnionType):
flags.append("_CFFI_F_UNION")
if tp.fldtypes is None:
flags.append("_CFFI_F_OPAQUE")
reason_for_not_expanding = "opaque"
if (tp not in self.ffi._parser._included_declarations and
(named_ptr is None or
named_ptr not in self.ffi._parser._included_declarations)):
if tp.fldtypes is None:
pass # opaque
elif tp.partial or any(tp.anonymous_struct_fields()):
pass # field layout obtained silently from the C compiler
else:
flags.append("_CFFI_F_CHECK_FIELDS")
if tp.packed:
if tp.packed > 1:
raise NotImplementedError(
"%r is declared with 'pack=%r'; only 0 or 1 are "
"supported in API mode (try to use \"...;\", which "
"does not require a 'pack' declaration)" %
(tp, tp.packed))
flags.append("_CFFI_F_PACKED")
else:
flags.append("_CFFI_F_EXTERNAL")
reason_for_not_expanding = "external"
flags = '|'.join(flags) or '0'
c_fields = []
if reason_for_not_expanding is None:
enumfields = list(self._enum_fields(tp))
for fldname, fldtype, fbitsize, fqual in enumfields:
fldtype = self._field_type(tp, fldname, fldtype)
self._check_not_opaque(fldtype,
"field '%s.%s'" % (tp.name, fldname))
# cname is None for _add_missing_struct_unions() only
op = OP_NOOP
if fbitsize >= 0:
op = OP_BITFIELD
size = '%d /* bits */' % fbitsize
elif cname is None or (
isinstance(fldtype, model.ArrayType) and
fldtype.length is None):
size = '(size_t)-1'
else:
size = 'sizeof(((%s)0)->%s)' % (
tp.get_c_name('*') if named_ptr is None
else named_ptr.name,
fldname)
if cname is None or fbitsize >= 0:
offset = '(size_t)-1'
elif named_ptr is not None:
offset = '((char *)&((%s)0)->%s) - (char *)0' % (
named_ptr.name, fldname)
else:
offset = 'offsetof(%s, %s)' % (tp.get_c_name(''), fldname)
c_fields.append(
FieldExpr(fldname, offset, size, fbitsize,
CffiOp(op, self._typesdict[fldtype])))
first_field_index = len(self._lsts["field"])
self._lsts["field"].extend(c_fields)
#
if cname is None: # unknown name, for _add_missing_struct_unions
size = '(size_t)-2'
align = -2
comment = "unnamed"
else:
if named_ptr is not None:
size = 'sizeof(*(%s)0)' % (named_ptr.name,)
align = '-1 /* unknown alignment */'
else:
size = 'sizeof(%s)' % (cname,)
align = 'offsetof(struct _cffi_align_%s, y)' % (approxname,)
comment = None
else:
size = '(size_t)-1'
align = -1
first_field_index = -1
comment = reason_for_not_expanding
self._lsts["struct_union"].append(
StructUnionExpr(tp.name, type_index, flags, size, align, comment,
first_field_index, c_fields))
self._seen_struct_unions.add(tp)
def _check_not_opaque(self, tp, location):
while isinstance(tp, model.ArrayType):
tp = tp.item
if isinstance(tp, model.StructOrUnion) and tp.fldtypes is None:
raise TypeError(
"%s is of an opaque type (not declared in cdef())" % location)
def _add_missing_struct_unions(self):
# not very nice, but some struct declarations might be missing
# because they don't have any known C name. Check that they are
# not partial (we can't complete or verify them!) and emit them
# anonymously.
lst = list(self._struct_unions.items())
lst.sort(key=lambda tp_order: tp_order[1])
for tp, order in lst:
if tp not in self._seen_struct_unions:
if tp.partial:
raise NotImplementedError("internal inconsistency: %r is "
"partial but was not seen at "
"this point" % (tp,))
if tp.name.startswith('$') and tp.name[1:].isdigit():
approxname = tp.name[1:]
elif tp.name == '_IO_FILE' and tp.forcename == 'FILE':
approxname = 'FILE'
self._typedef_ctx(tp, 'FILE')
else:
raise NotImplementedError("internal inconsistency: %r" %
(tp,))
self._struct_ctx(tp, None, approxname)
def _generate_cpy_struct_collecttype(self, tp, name):
self._struct_collecttype(tp)
_generate_cpy_union_collecttype = _generate_cpy_struct_collecttype
def _struct_names(self, tp):
cname = tp.get_c_name('')
if ' ' in cname:
return cname, cname.replace(' ', '_')
else:
return cname, '_' + cname
def _generate_cpy_struct_decl(self, tp, name):
self._struct_decl(tp, *self._struct_names(tp))
_generate_cpy_union_decl = _generate_cpy_struct_decl
def _generate_cpy_struct_ctx(self, tp, name):
self._struct_ctx(tp, *self._struct_names(tp))
_generate_cpy_union_ctx = _generate_cpy_struct_ctx
# ----------
# 'anonymous' declarations. These are produced for anonymous structs
# or unions; the 'name' is obtained by a typedef.
def _generate_cpy_anonymous_collecttype(self, tp, name):
if isinstance(tp, model.EnumType):
self._generate_cpy_enum_collecttype(tp, name)
else:
self._struct_collecttype(tp)
def _generate_cpy_anonymous_decl(self, tp, name):
if isinstance(tp, model.EnumType):
self._generate_cpy_enum_decl(tp)
else:
self._struct_decl(tp, name, 'typedef_' + name)
def _generate_cpy_anonymous_ctx(self, tp, name):
if isinstance(tp, model.EnumType):
self._enum_ctx(tp, name)
else:
self._struct_ctx(tp, name, 'typedef_' + name)
# ----------
# constants, declared with "static const ..."
def _generate_cpy_const(self, is_int, name, tp=None, category='const',
check_value=None):
if (category, name) in self._seen_constants:
raise VerificationError(
"duplicate declaration of %s '%s'" % (category, name))
self._seen_constants.add((category, name))
#
prnt = self._prnt
funcname = '_cffi_%s_%s' % (category, name)
if is_int:
prnt('static int %s(unsigned long long *o)' % funcname)
prnt('{')
prnt(' int n = (%s) <= 0;' % (name,))
prnt(' *o = (unsigned long long)((%s) | 0);'
' /* check that %s is an integer */' % (name, name))
if check_value is not None:
if check_value > 0:
check_value = '%dU' % (check_value,)
prnt(' if (!_cffi_check_int(*o, n, %s))' % (check_value,))
prnt(' n |= 2;')
prnt(' return n;')
prnt('}')
else:
assert check_value is None
prnt('static void %s(char *o)' % funcname)
prnt('{')
prnt(' *(%s)o = %s;' % (tp.get_c_name('*'), name))
prnt('}')
prnt()
def _generate_cpy_constant_collecttype(self, tp, name):
is_int = tp.is_integer_type()
if not is_int or self.target_is_python:
self._do_collect_type(tp)
def _generate_cpy_constant_decl(self, tp, name):
is_int = tp.is_integer_type()
self._generate_cpy_const(is_int, name, tp)
def _generate_cpy_constant_ctx(self, tp, name):
if not self.target_is_python and tp.is_integer_type():
type_op = CffiOp(OP_CONSTANT_INT, -1)
else:
if self.target_is_python:
const_kind = OP_DLOPEN_CONST
else:
const_kind = OP_CONSTANT
type_index = self._typesdict[tp]
type_op = CffiOp(const_kind, type_index)
self._lsts["global"].append(
GlobalExpr(name, '_cffi_const_%s' % name, type_op))
# ----------
# enums
def _generate_cpy_enum_collecttype(self, tp, name):
self._do_collect_type(tp)
def _generate_cpy_enum_decl(self, tp, name=None):
for enumerator in tp.enumerators:
self._generate_cpy_const(True, enumerator)
def _enum_ctx(self, tp, cname):
type_index = self._typesdict[tp]
type_op = CffiOp(OP_ENUM, -1)
if self.target_is_python:
tp.check_not_partial()
for enumerator, enumvalue in zip(tp.enumerators, tp.enumvalues):
self._lsts["global"].append(
GlobalExpr(enumerator, '_cffi_const_%s' % enumerator, type_op,
check_value=enumvalue))
#
if cname is not None and '$' not in cname and not self.target_is_python:
size = "sizeof(%s)" % cname
signed = "((%s)-1) <= 0" % cname
else:
basetp = tp.build_baseinttype(self.ffi, [])
size = self.ffi.sizeof(basetp)
signed = int(int(self.ffi.cast(basetp, -1)) < 0)
allenums = ",".join(tp.enumerators)
self._lsts["enum"].append(
EnumExpr(tp.name, type_index, size, signed, allenums))
def _generate_cpy_enum_ctx(self, tp, name):
self._enum_ctx(tp, tp._get_c_name())
# ----------
# macros: for now only for integers
def _generate_cpy_macro_collecttype(self, tp, name):
pass
def _generate_cpy_macro_decl(self, tp, name):
if tp == '...':
check_value = None
else:
check_value = tp # an integer
self._generate_cpy_const(True, name, check_value=check_value)
def _generate_cpy_macro_ctx(self, tp, name):
if tp == '...':
if self.target_is_python:
raise VerificationError(
"cannot use the syntax '...' in '#define %s ...' when "
"using the ABI mode" % (name,))
check_value = None
else:
check_value = tp # an integer
type_op = CffiOp(OP_CONSTANT_INT, -1)
self._lsts["global"].append(
GlobalExpr(name, '_cffi_const_%s' % name, type_op,
check_value=check_value))
# ----------
# global variables
def _global_type(self, tp, global_name):
if isinstance(tp, model.ArrayType):
actual_length = tp.length
if actual_length == '...':
actual_length = '_cffi_array_len(%s)' % (global_name,)
tp_item = self._global_type(tp.item, '%s[0]' % global_name)
tp = model.ArrayType(tp_item, actual_length)
return tp
def _generate_cpy_variable_collecttype(self, tp, name):
self._do_collect_type(self._global_type(tp, name))
def _generate_cpy_variable_decl(self, tp, name):
prnt = self._prnt
tp = self._global_type(tp, name)
if isinstance(tp, model.ArrayType) and tp.length is None:
tp = tp.item
ampersand = ''
else:
ampersand = '&'
# This code assumes that casts from "tp *" to "void *" is a
# no-op, i.e. a function that returns a "tp *" can be called
# as if it returned a "void *". This should be generally true
# on any modern machine. The only exception to that rule (on
# uncommon architectures, and as far as I can tell) might be
# if 'tp' were a function type, but that is not possible here.
# (If 'tp' is a function _pointer_ type, then casts from "fn_t
# **" to "void *" are again no-ops, as far as I can tell.)
decl = '*_cffi_var_%s(void)' % (name,)
prnt('static ' + tp.get_c_name(decl, quals=self._current_quals))
prnt('{')
prnt(' return %s(%s);' % (ampersand, name))
prnt('}')
prnt()
def _generate_cpy_variable_ctx(self, tp, name):
tp = self._global_type(tp, name)
type_index = self._typesdict[tp]
if self.target_is_python:
op = OP_GLOBAL_VAR
else:
op = OP_GLOBAL_VAR_F
self._lsts["global"].append(
GlobalExpr(name, '_cffi_var_%s' % name, CffiOp(op, type_index)))
# ----------
# extern "Python"
def _generate_cpy_extern_python_collecttype(self, tp, name):
assert isinstance(tp, model.FunctionPtrType)
self._do_collect_type(tp)
_generate_cpy_dllexport_python_collecttype = \
_generate_cpy_extern_python_plus_c_collecttype = \
_generate_cpy_extern_python_collecttype
def _extern_python_decl(self, tp, name, tag_and_space):
prnt = self._prnt
if isinstance(tp.result, model.VoidType):
size_of_result = '0'
else:
context = 'result of %s' % name
size_of_result = '(int)sizeof(%s)' % (
tp.result.get_c_name('', context),)
prnt('static struct _cffi_externpy_s _cffi_externpy__%s =' % name)
prnt(' { "%s.%s", %s, 0, 0 };' % (
self.module_name, name, size_of_result))
prnt()
#
arguments = []
context = 'argument of %s' % name
for i, type in enumerate(tp.args):
arg = type.get_c_name(' a%d' % i, context)
arguments.append(arg)
#
repr_arguments = ', '.join(arguments)
repr_arguments = repr_arguments or 'void'
name_and_arguments = '%s(%s)' % (name, repr_arguments)
if tp.abi == "__stdcall":
name_and_arguments = '_cffi_stdcall ' + name_and_arguments
#
def may_need_128_bits(tp):
return (isinstance(tp, model.PrimitiveType) and
tp.name == 'long double')
#
size_of_a = max(len(tp.args)*8, 8)
if may_need_128_bits(tp.result):
size_of_a = max(size_of_a, 16)
if isinstance(tp.result, model.StructOrUnion):
size_of_a = 'sizeof(%s) > %d ? sizeof(%s) : %d' % (
tp.result.get_c_name(''), size_of_a,
tp.result.get_c_name(''), size_of_a)
prnt('%s%s' % (tag_and_space, tp.result.get_c_name(name_and_arguments)))
prnt('{')
prnt(' char a[%s];' % size_of_a)
prnt(' char *p = a;')
for i, type in enumerate(tp.args):
arg = 'a%d' % i
if (isinstance(type, model.StructOrUnion) or
may_need_128_bits(type)):
arg = '&' + arg
type = model.PointerType(type)
prnt(' *(%s)(p + %d) = %s;' % (type.get_c_name('*'), i*8, arg))
prnt(' _cffi_call_python(&_cffi_externpy__%s, p);' % name)
if not isinstance(tp.result, model.VoidType):
prnt(' return *(%s)p;' % (tp.result.get_c_name('*'),))
prnt('}')
prnt()
self._num_externpy += 1
def _generate_cpy_extern_python_decl(self, tp, name):
self._extern_python_decl(tp, name, 'static ')
def _generate_cpy_dllexport_python_decl(self, tp, name):
self._extern_python_decl(tp, name, 'CFFI_DLLEXPORT ')
def _generate_cpy_extern_python_plus_c_decl(self, tp, name):
self._extern_python_decl(tp, name, '')
def _generate_cpy_extern_python_ctx(self, tp, name):
if self.target_is_python:
raise VerificationError(
"cannot use 'extern \"Python\"' in the ABI mode")
if tp.ellipsis:
raise NotImplementedError("a vararg function is extern \"Python\"")
type_index = self._typesdict[tp]
type_op = CffiOp(OP_EXTERN_PYTHON, type_index)
self._lsts["global"].append(
GlobalExpr(name, '&_cffi_externpy__%s' % name, type_op, name))
_generate_cpy_dllexport_python_ctx = \
_generate_cpy_extern_python_plus_c_ctx = \
_generate_cpy_extern_python_ctx
def _print_string_literal_in_array(self, s):
prnt = self._prnt
prnt('// # NB. this is not a string because of a size limit in MSVC')
if not isinstance(s, bytes): # unicode
s = s.encode('utf-8') # -> bytes
else:
s.decode('utf-8') # got bytes, check for valid utf-8
try:
s.decode('ascii')
except UnicodeDecodeError:
s = b'# -*- encoding: utf8 -*-\n' + s
for line in s.splitlines(True):
comment = line
if type('//') is bytes: # python2
line = map(ord, line) # make a list of integers
else: # python3
# type(line) is bytes, which enumerates like a list of integers
comment = ascii(comment)[1:-1]
prnt(('// ' + comment).rstrip())
printed_line = ''
for c in line:
if len(printed_line) >= 76:
prnt(printed_line)
printed_line = ''
printed_line += '%d,' % (c,)
prnt(printed_line)
# ----------
# emitting the opcodes for individual types
def _emit_bytecode_VoidType(self, tp, index):
self.cffi_types[index] = CffiOp(OP_PRIMITIVE, PRIM_VOID)
def _emit_bytecode_PrimitiveType(self, tp, index):
prim_index = PRIMITIVE_TO_INDEX[tp.name]
self.cffi_types[index] = CffiOp(OP_PRIMITIVE, prim_index)
def _emit_bytecode_UnknownIntegerType(self, tp, index):
s = ('_cffi_prim_int(sizeof(%s), (\n'
' ((%s)-1) | 0 /* check that %s is an integer type */\n'
' ) <= 0)' % (tp.name, tp.name, tp.name))
self.cffi_types[index] = CffiOp(OP_PRIMITIVE, s)
def _emit_bytecode_UnknownFloatType(self, tp, index):
s = ('_cffi_prim_float(sizeof(%s) *\n'
' (((%s)1) / 2) * 2 /* integer => 0, float => 1 */\n'
' )' % (tp.name, tp.name))
self.cffi_types[index] = CffiOp(OP_PRIMITIVE, s)
def _emit_bytecode_RawFunctionType(self, tp, index):
self.cffi_types[index] = CffiOp(OP_FUNCTION, self._typesdict[tp.result])
index += 1
for tp1 in tp.args:
realindex = self._typesdict[tp1]
if index != realindex:
if isinstance(tp1, model.PrimitiveType):
self._emit_bytecode_PrimitiveType(tp1, index)
else:
self.cffi_types[index] = CffiOp(OP_NOOP, realindex)
index += 1
flags = int(tp.ellipsis)
if tp.abi is not None:
if tp.abi == '__stdcall':
flags |= 2
else:
raise NotImplementedError("abi=%r" % (tp.abi,))
self.cffi_types[index] = CffiOp(OP_FUNCTION_END, flags)
def _emit_bytecode_PointerType(self, tp, index):
self.cffi_types[index] = CffiOp(OP_POINTER, self._typesdict[tp.totype])
_emit_bytecode_ConstPointerType = _emit_bytecode_PointerType
_emit_bytecode_NamedPointerType = _emit_bytecode_PointerType
def _emit_bytecode_FunctionPtrType(self, tp, index):
raw = tp.as_raw_function()
self.cffi_types[index] = CffiOp(OP_POINTER, self._typesdict[raw])
def _emit_bytecode_ArrayType(self, tp, index):
item_index = self._typesdict[tp.item]
if tp.length is None:
self.cffi_types[index] = CffiOp(OP_OPEN_ARRAY, item_index)
elif tp.length == '...':
raise VerificationError(
"type %s badly placed: the '...' array length can only be "
"used on global arrays or on fields of structures" % (
str(tp).replace('/*...*/', '...'),))
else:
assert self.cffi_types[index + 1] == 'LEN'
self.cffi_types[index] = CffiOp(OP_ARRAY, item_index)
self.cffi_types[index + 1] = CffiOp(None, str(tp.length))
def _emit_bytecode_StructType(self, tp, index):
struct_index = self._struct_unions[tp]
self.cffi_types[index] = CffiOp(OP_STRUCT_UNION, struct_index)
_emit_bytecode_UnionType = _emit_bytecode_StructType
def _emit_bytecode_EnumType(self, tp, index):
enum_index = self._enums[tp]
self.cffi_types[index] = CffiOp(OP_ENUM, enum_index)
if sys.version_info >= (3,):
NativeIO = io.StringIO
else:
class NativeIO(io.BytesIO):
def write(self, s):
if isinstance(s, unicode):
s = s.encode('ascii')
super(NativeIO, self).write(s)
def _make_c_or_py_source(ffi, module_name, preamble, target_file, verbose):
if verbose:
print("generating %s" % (target_file,))
recompiler = Recompiler(ffi, module_name,
target_is_python=(preamble is None))
recompiler.collect_type_table()
recompiler.collect_step_tables()
f = NativeIO()
recompiler.write_source_to_f(f, preamble)
output = f.getvalue()
try:
with open(target_file, 'r') as f1:
if f1.read(len(output) + 1) != output:
raise IOError
if verbose:
print("(already up-to-date)")
return False # already up-to-date
except IOError:
tmp_file = '%s.~%d' % (target_file, os.getpid())
with open(tmp_file, 'w') as f1:
f1.write(output)
try:
os.rename(tmp_file, target_file)
except OSError:
os.unlink(target_file)
os.rename(tmp_file, target_file)
return True
def make_c_source(ffi, module_name, preamble, target_c_file, verbose=False):
assert preamble is not None
return _make_c_or_py_source(ffi, module_name, preamble, target_c_file,
verbose)
def make_py_source(ffi, module_name, target_py_file, verbose=False):
return _make_c_or_py_source(ffi, module_name, None, target_py_file,
verbose)
def _modname_to_file(outputdir, modname, extension):
parts = modname.split('.')
try:
os.makedirs(os.path.join(outputdir, *parts[:-1]))
except OSError:
pass
parts[-1] += extension
return os.path.join(outputdir, *parts), parts
# Aaargh. Distutils is not tested at all for the purpose of compiling
# DLLs that are not extension modules. Here are some hacks to work
# around that, in the _patch_for_*() functions...
def _patch_meth(patchlist, cls, name, new_meth):
old = getattr(cls, name)
patchlist.append((cls, name, old))
setattr(cls, name, new_meth)
return old
def _unpatch_meths(patchlist):
for cls, name, old_meth in reversed(patchlist):
setattr(cls, name, old_meth)
def _patch_for_embedding(patchlist):
if sys.platform == 'win32':
# we must not remove the manifest when building for embedding!
from distutils.msvc9compiler import MSVCCompiler
_patch_meth(patchlist, MSVCCompiler, '_remove_visual_c_ref',
lambda self, manifest_file: manifest_file)
if sys.platform == 'darwin':
# we must not make a '-bundle', but a '-dynamiclib' instead
from distutils.ccompiler import CCompiler
def my_link_shared_object(self, *args, **kwds):
if '-bundle' in self.linker_so:
self.linker_so = list(self.linker_so)
i = self.linker_so.index('-bundle')
self.linker_so[i] = '-dynamiclib'
return old_link_shared_object(self, *args, **kwds)
old_link_shared_object = _patch_meth(patchlist, CCompiler,
'link_shared_object',
my_link_shared_object)
def _patch_for_target(patchlist, target):
from distutils.command.build_ext import build_ext
# if 'target' is different from '*', we need to patch some internal
# method to just return this 'target' value, instead of having it
# built from module_name
if target.endswith('.*'):
target = target[:-2]
if sys.platform == 'win32':
target += '.dll'
elif sys.platform == 'darwin':
target += '.dylib'
else:
target += '.so'
_patch_meth(patchlist, build_ext, 'get_ext_filename',
lambda self, ext_name: target)
def recompile(ffi, module_name, preamble, tmpdir='.', call_c_compiler=True,
c_file=None, source_extension='.c', extradir=None,
compiler_verbose=1, target=None, debug=None, **kwds):
if not isinstance(module_name, str):
module_name = module_name.encode('ascii')
if ffi._windows_unicode:
ffi._apply_windows_unicode(kwds)
if preamble is not None:
embedding = (ffi._embedding is not None)
if embedding:
ffi._apply_embedding_fix(kwds)
if c_file is None:
c_file, parts = _modname_to_file(tmpdir, module_name,
source_extension)
if extradir:
parts = [extradir] + parts
ext_c_file = os.path.join(*parts)
else:
ext_c_file = c_file
#
if target is None:
if embedding:
target = '%s.*' % module_name
else:
target = '*'
#
ext = ffiplatform.get_extension(ext_c_file, module_name, **kwds)
updated = make_c_source(ffi, module_name, preamble, c_file,
verbose=compiler_verbose)
if call_c_compiler:
patchlist = []
cwd = os.getcwd()
try:
if embedding:
_patch_for_embedding(patchlist)
if target != '*':
_patch_for_target(patchlist, target)
if compiler_verbose:
if tmpdir == '.':
msg = 'the current directory is'
else:
msg = 'setting the current directory to'
print('%s %r' % (msg, os.path.abspath(tmpdir)))
os.chdir(tmpdir)
outputfilename = ffiplatform.compile('.', ext,
compiler_verbose, debug)
finally:
os.chdir(cwd)
_unpatch_meths(patchlist)
return outputfilename
else:
return ext, updated
else:
if c_file is None:
c_file, _ = _modname_to_file(tmpdir, module_name, '.py')
updated = make_py_source(ffi, module_name, c_file,
verbose=compiler_verbose)
if call_c_compiler:
return c_file
else:
return None, updated