import cython import numpy as np from cpython cimport ( PyBytes_GET_SIZE, PyUnicode_GET_LENGTH, ) from numpy cimport ( ndarray, uint8_t, ) ctypedef fused pandas_string: str bytes @cython.boundscheck(False) @cython.wraparound(False) def write_csv_rows( list data, ndarray data_index, Py_ssize_t nlevels, ndarray cols, object writer ) -> None: """ Write the given data to the writer object, pre-allocating where possible for performance improvements. Parameters ---------- data : list[ArrayLike] data_index : ndarray nlevels : int cols : ndarray writer : _csv.writer """ # In crude testing, N>100 yields little marginal improvement cdef: Py_ssize_t i, j = 0, k = len(data_index), N = 100, ncols = len(cols) list rows # pre-allocate rows rows = [[None] * (nlevels + ncols) for _ in range(N)] if nlevels == 1: for j in range(k): row = rows[j % N] row[0] = data_index[j] for i in range(ncols): row[1 + i] = data[i][j] if j >= N - 1 and j % N == N - 1: writer.writerows(rows) elif nlevels > 1: for j in range(k): row = rows[j % N] row[:nlevels] = list(data_index[j]) for i in range(ncols): row[nlevels + i] = data[i][j] if j >= N - 1 and j % N == N - 1: writer.writerows(rows) else: for j in range(k): row = rows[j % N] for i in range(ncols): row[i] = data[i][j] if j >= N - 1 and j % N == N - 1: writer.writerows(rows) if j >= 0 and (j < N - 1 or (j % N) != N - 1): writer.writerows(rows[:((j + 1) % N)]) @cython.boundscheck(False) @cython.wraparound(False) def convert_json_to_lines(arr: str) -> str: """ replace comma separated json with line feeds, paying special attention to quotes & brackets """ cdef: Py_ssize_t i = 0, num_open_brackets_seen = 0, length bint in_quotes = False, is_escaping = False ndarray[uint8_t, ndim=1] narr unsigned char val, newline, comma, left_bracket, right_bracket, quote unsigned char backslash newline = ord('\n') comma = ord(',') left_bracket = ord('{') right_bracket = ord('}') quote = ord('"') backslash = ord('\\') narr = np.frombuffer(arr.encode('utf-8'), dtype='u1').copy() length = narr.shape[0] for i in range(length): val = narr[i] if val == quote and i > 0 and not is_escaping: in_quotes = ~in_quotes if val == backslash or is_escaping: is_escaping = ~is_escaping if val == comma: # commas that should be \n if num_open_brackets_seen == 0 and not in_quotes: narr[i] = newline elif val == left_bracket: if not in_quotes: num_open_brackets_seen += 1 elif val == right_bracket: if not in_quotes: num_open_brackets_seen -= 1 return narr.tobytes().decode('utf-8') + '\n' # GH:36888 # stata, pytables @cython.boundscheck(False) @cython.wraparound(False) def max_len_string_array(pandas_string[:] arr) -> Py_ssize_t: """ Return the maximum size of elements in a 1-dim string array. """ cdef: Py_ssize_t i, m = 0, wlen = 0, length = arr.shape[0] pandas_string val for i in range(length): val = arr[i] wlen = word_len(val) if wlen > m: m = wlen return m cpdef inline Py_ssize_t word_len(object val): """ Return the maximum length of a string or bytes value. """ cdef: Py_ssize_t wlen = 0 if isinstance(val, str): wlen = PyUnicode_GET_LENGTH(val) elif isinstance(val, bytes): wlen = PyBytes_GET_SIZE(val) return wlen # ------------------------------------------------------------------ # PyTables Helpers @cython.boundscheck(False) @cython.wraparound(False) def string_array_replace_from_nan_rep( ndarray[object, ndim=1] arr, object nan_rep, object replace=np.nan ) -> None: """ Replace the values in the array with 'replacement' if they are 'nan_rep'. Return the same array. """ cdef: Py_ssize_t length = len(arr), i = 0 for i in range(length): if arr[i] == nan_rep: arr[i] = replace