import cython from cython import Py_ssize_t from cython cimport floating from libc.stdlib cimport ( free, malloc, ) import numpy as np cimport numpy as cnp from numpy cimport ( complex64_t, complex128_t, float32_t, float64_t, int8_t, int16_t, int32_t, int64_t, intp_t, ndarray, uint8_t, uint16_t, uint32_t, uint64_t, ) from numpy.math cimport NAN cnp.import_array() from pandas._libs.algos cimport kth_smallest_c from pandas._libs.util cimport get_nat from pandas._libs.algos import ( ensure_platform_int, groupsort_indexer, rank_1d, take_2d_axis1_float64_float64, ) from pandas._libs.dtypes cimport ( iu_64_floating_obj_t, iu_64_floating_t, numeric_t, ) from pandas._libs.missing cimport checknull cdef int64_t NPY_NAT = get_nat() _int64_max = np.iinfo(np.int64).max cdef float64_t NaN = np.NaN cdef enum InterpolationEnumType: INTERPOLATION_LINEAR, INTERPOLATION_LOWER, INTERPOLATION_HIGHER, INTERPOLATION_NEAREST, INTERPOLATION_MIDPOINT cdef inline float64_t median_linear(float64_t* a, int n) nogil: cdef: int i, j, na_count = 0 float64_t result float64_t* tmp if n == 0: return NaN # count NAs for i in range(n): if a[i] != a[i]: na_count += 1 if na_count: if na_count == n: return NaN tmp = malloc((n - na_count) * sizeof(float64_t)) j = 0 for i in range(n): if a[i] == a[i]: tmp[j] = a[i] j += 1 a = tmp n -= na_count if n % 2: result = kth_smallest_c(a, n // 2, n) else: result = (kth_smallest_c(a, n // 2, n) + kth_smallest_c(a, n // 2 - 1, n)) / 2 if na_count: free(a) return result @cython.boundscheck(False) @cython.wraparound(False) def group_median_float64(ndarray[float64_t, ndim=2] out, ndarray[int64_t] counts, ndarray[float64_t, ndim=2] values, ndarray[intp_t] labels, Py_ssize_t min_count=-1) -> None: """ Only aggregates on axis=0 """ cdef: Py_ssize_t i, j, N, K, ngroups, size ndarray[intp_t] _counts ndarray[float64_t, ndim=2] data ndarray[intp_t] indexer float64_t* ptr assert min_count == -1, "'min_count' only used in add and prod" ngroups = len(counts) N, K = (values).shape indexer, _counts = groupsort_indexer(labels, ngroups) counts[:] = _counts[1:] data = np.empty((K, N), dtype=np.float64) ptr = cnp.PyArray_DATA(data) take_2d_axis1_float64_float64(values.T, indexer, out=data) with nogil: for i in range(K): # exclude NA group ptr += _counts[0] for j in range(ngroups): size = _counts[j + 1] out[j, i] = median_linear(ptr, size) ptr += size @cython.boundscheck(False) @cython.wraparound(False) def group_cumprod_float64(float64_t[:, ::1] out, const float64_t[:, :] values, const intp_t[::1] labels, int ngroups, bint is_datetimelike, bint skipna=True) -> None: """ Cumulative product of columns of `values`, in row groups `labels`. Parameters ---------- out : np.ndarray[np.float64, ndim=2] Array to store cumprod in. values : np.ndarray[np.float64, ndim=2] Values to take cumprod of. labels : np.ndarray[np.intp] Labels to group by. ngroups : int Number of groups, larger than all entries of `labels`. is_datetimelike : bool Always false, `values` is never datetime-like. skipna : bool If true, ignore nans in `values`. Notes ----- This method modifies the `out` parameter, rather than returning an object. """ cdef: Py_ssize_t i, j, N, K, size float64_t val float64_t[:, ::1] accum intp_t lab N, K = (values).shape accum = np.ones((ngroups, K), dtype=np.float64) with nogil: for i in range(N): lab = labels[i] if lab < 0: continue for j in range(K): val = values[i, j] if val == val: accum[lab, j] *= val out[i, j] = accum[lab, j] else: out[i, j] = NaN if not skipna: accum[lab, j] = NaN break @cython.boundscheck(False) @cython.wraparound(False) def group_cumsum(numeric_t[:, ::1] out, ndarray[numeric_t, ndim=2] values, const intp_t[::1] labels, int ngroups, is_datetimelike, bint skipna=True) -> None: """ Cumulative sum of columns of `values`, in row groups `labels`. Parameters ---------- out : np.ndarray[ndim=2] Array to store cumsum in. values : np.ndarray[ndim=2] Values to take cumsum of. labels : np.ndarray[np.intp] Labels to group by. ngroups : int Number of groups, larger than all entries of `labels`. is_datetimelike : bool True if `values` contains datetime-like entries. skipna : bool If true, ignore nans in `values`. Notes ----- This method modifies the `out` parameter, rather than returning an object. """ cdef: Py_ssize_t i, j, N, K, size numeric_t val, y, t numeric_t[:, ::1] accum, compensation intp_t lab N, K = (values).shape accum = np.zeros((ngroups, K), dtype=np.asarray(values).dtype) compensation = np.zeros((ngroups, K), dtype=np.asarray(values).dtype) with nogil: for i in range(N): lab = labels[i] if lab < 0: continue for j in range(K): val = values[i, j] # For floats, use Kahan summation to reduce floating-point # error (https://en.wikipedia.org/wiki/Kahan_summation_algorithm) if numeric_t == float32_t or numeric_t == float64_t: if val == val: y = val - compensation[lab, j] t = accum[lab, j] + y compensation[lab, j] = t - accum[lab, j] - y accum[lab, j] = t out[i, j] = t else: out[i, j] = NaN if not skipna: accum[lab, j] = NaN break else: t = val + accum[lab, j] accum[lab, j] = t out[i, j] = t @cython.boundscheck(False) @cython.wraparound(False) def group_shift_indexer(int64_t[::1] out, const intp_t[::1] labels, int ngroups, int periods) -> None: cdef: Py_ssize_t N, i, j, ii, lab int offset = 0, sign int64_t idxer, idxer_slot int64_t[::1] label_seen = np.zeros(ngroups, dtype=np.int64) int64_t[:, ::1] label_indexer N, = (labels).shape if periods < 0: periods = -periods offset = N - 1 sign = -1 elif periods > 0: offset = 0 sign = 1 if periods == 0: with nogil: for i in range(N): out[i] = i else: # array of each previous indexer seen label_indexer = np.zeros((ngroups, periods), dtype=np.int64) with nogil: for i in range(N): # reverse iterator if shifting backwards ii = offset + sign * i lab = labels[ii] # Skip null keys if lab == -1: out[ii] = -1 continue label_seen[lab] += 1 idxer_slot = label_seen[lab] % periods idxer = label_indexer[lab, idxer_slot] if label_seen[lab] > periods: out[ii] = idxer else: out[ii] = -1 label_indexer[lab, idxer_slot] = ii @cython.wraparound(False) @cython.boundscheck(False) def group_fillna_indexer(ndarray[intp_t] out, ndarray[intp_t] labels, ndarray[intp_t] sorted_labels, ndarray[uint8_t] mask, str direction, int64_t limit, bint dropna) -> None: """ Indexes how to fill values forwards or backwards within a group. Parameters ---------- out : np.ndarray[np.intp] Values into which this method will write its results. labels : np.ndarray[np.intp] Array containing unique label for each group, with its ordering matching up to the corresponding record in `values`. sorted_labels : np.ndarray[np.intp] obtained by `np.argsort(labels, kind="mergesort")`; reversed if direction == "bfill" values : np.ndarray[np.uint8] Containing the truth value of each element. mask : np.ndarray[np.uint8] Indicating whether a value is na or not. direction : {'ffill', 'bfill'} Direction for fill to be applied (forwards or backwards, respectively) limit : Consecutive values to fill before stopping, or -1 for no limit dropna : Flag to indicate if NaN groups should return all NaN values Notes ----- This method modifies the `out` parameter rather than returning an object """ cdef: Py_ssize_t i, N, idx intp_t curr_fill_idx=-1 int64_t filled_vals = 0 N = len(out) # Make sure all arrays are the same size assert N == len(labels) == len(mask) with nogil: for i in range(N): idx = sorted_labels[i] if dropna and labels[idx] == -1: # nan-group gets nan-values curr_fill_idx = -1 elif mask[idx] == 1: # is missing # Stop filling once we've hit the limit if filled_vals >= limit and limit != -1: curr_fill_idx = -1 filled_vals += 1 else: # reset items when not missing filled_vals = 0 curr_fill_idx = idx out[idx] = curr_fill_idx # If we move to the next group, reset # the fill_idx and counter if i == N - 1 or labels[idx] != labels[sorted_labels[i + 1]]: curr_fill_idx = -1 filled_vals = 0 @cython.boundscheck(False) @cython.wraparound(False) def group_any_all(int8_t[:, ::1] out, const int8_t[:, :] values, const intp_t[::1] labels, const uint8_t[:, :] mask, str val_test, bint skipna, bint nullable) -> None: """ Aggregated boolean values to show truthfulness of group elements. If the input is a nullable type (nullable=True), the result will be computed using Kleene logic. Parameters ---------- out : np.ndarray[np.int8] Values into which this method will write its results. labels : np.ndarray[np.intp] Array containing unique label for each group, with its ordering matching up to the corresponding record in `values` values : np.ndarray[np.int8] Containing the truth value of each element. mask : np.ndarray[np.uint8] Indicating whether a value is na or not. val_test : {'any', 'all'} String object dictating whether to use any or all truth testing skipna : bool Flag to ignore nan values during truth testing nullable : bool Whether or not the input is a nullable type. If True, the result will be computed using Kleene logic Notes ----- This method modifies the `out` parameter rather than returning an object. The returned values will either be 0, 1 (False or True, respectively), or -1 to signify a masked position in the case of a nullable input. """ cdef: Py_ssize_t i, j, N = len(labels), K = out.shape[1] intp_t lab int8_t flag_val, val if val_test == 'all': # Because the 'all' value of an empty iterable in Python is True we can # start with an array full of ones and set to zero when a False value # is encountered flag_val = 0 elif val_test == 'any': # Because the 'any' value of an empty iterable in Python is False we # can start with an array full of zeros and set to one only if any # value encountered is True flag_val = 1 else: raise ValueError("'bool_func' must be either 'any' or 'all'!") out[:] = 1 - flag_val with nogil: for i in range(N): lab = labels[i] if lab < 0: continue for j in range(K): if skipna and mask[i, j]: continue if nullable and mask[i, j]: # Set the position as masked if `out[lab] != flag_val`, which # would indicate True/False has not yet been seen for any/all, # so by Kleene logic the result is currently unknown if out[lab, j] != flag_val: out[lab, j] = -1 continue val = values[i, j] # If True and 'any' or False and 'all', the result is # already determined if val == flag_val: out[lab, j] = flag_val # ---------------------------------------------------------------------- # group_add, group_prod, group_var, group_mean, group_ohlc # ---------------------------------------------------------------------- ctypedef fused add_t: float64_t float32_t complex64_t complex128_t object ctypedef fused mean_t: float64_t float32_t complex64_t complex128_t @cython.wraparound(False) @cython.boundscheck(False) def group_add(add_t[:, ::1] out, int64_t[::1] counts, ndarray[add_t, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=0, bint datetimelike=False) -> None: """ Only aggregates on axis=0 using Kahan summation """ cdef: Py_ssize_t i, j, N, K, lab, ncounts = len(counts) add_t val, t, y add_t[:, ::1] sumx, compensation int64_t[:, ::1] nobs Py_ssize_t len_values = len(values), len_labels = len(labels) if len_values != len_labels: raise ValueError("len(index) != len(labels)") nobs = np.zeros((out).shape, dtype=np.int64) # the below is equivalent to `np.zeros_like(out)` but faster sumx = np.zeros((out).shape, dtype=(out).base.dtype) compensation = np.zeros((out).shape, dtype=(out).base.dtype) N, K = (values).shape if add_t is object: # NB: this does not use 'compensation' like the non-object track does. for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] # not nan if not checknull(val): nobs[lab, j] += 1 if nobs[lab, j] == 1: # i.e. we haven't added anything yet; avoid TypeError # if e.g. val is a str and sumx[lab, j] is 0 t = val else: t = sumx[lab, j] + val sumx[lab, j] = t for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: out[i, j] = NAN else: out[i, j] = sumx[i, j] else: with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] # not nan # With dt64/td64 values, values have been cast to float64 # instead if int64 for group_add, but the logic # is otherwise the same as in _treat_as_na if val == val and not ( add_t is float64_t and datetimelike and val == NPY_NAT ): nobs[lab, j] += 1 y = val - compensation[lab, j] t = sumx[lab, j] + y compensation[lab, j] = t - sumx[lab, j] - y sumx[lab, j] = t for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: out[i, j] = NAN else: out[i, j] = sumx[i, j] @cython.wraparound(False) @cython.boundscheck(False) def group_prod(floating[:, ::1] out, int64_t[::1] counts, ndarray[floating, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=0) -> None: """ Only aggregates on axis=0 """ cdef: Py_ssize_t i, j, N, K, lab, ncounts = len(counts) floating val, count floating[:, ::1] prodx int64_t[:, ::1] nobs Py_ssize_t len_values = len(values), len_labels = len(labels) if len_values != len_labels: raise ValueError("len(index) != len(labels)") nobs = np.zeros((out).shape, dtype=np.int64) prodx = np.ones((out).shape, dtype=(out).base.dtype) N, K = (values).shape with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] # not nan if val == val: nobs[lab, j] += 1 prodx[lab, j] *= val for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: out[i, j] = NAN else: out[i, j] = prodx[i, j] @cython.wraparound(False) @cython.boundscheck(False) @cython.cdivision(True) def group_var(floating[:, ::1] out, int64_t[::1] counts, ndarray[floating, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1, int64_t ddof=1) -> None: cdef: Py_ssize_t i, j, N, K, lab, ncounts = len(counts) floating val, ct, oldmean floating[:, ::1] mean int64_t[:, ::1] nobs Py_ssize_t len_values = len(values), len_labels = len(labels) assert min_count == -1, "'min_count' only used in add and prod" if len_values != len_labels: raise ValueError("len(index) != len(labels)") nobs = np.zeros((out).shape, dtype=np.int64) mean = np.zeros((out).shape, dtype=(out).base.dtype) N, K = (values).shape out[:, :] = 0.0 with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] # not nan if val == val: nobs[lab, j] += 1 oldmean = mean[lab, j] mean[lab, j] += (val - oldmean) / nobs[lab, j] out[lab, j] += (val - mean[lab, j]) * (val - oldmean) for i in range(ncounts): for j in range(K): ct = nobs[i, j] if ct <= ddof: out[i, j] = NAN else: out[i, j] /= (ct - ddof) @cython.wraparound(False) @cython.boundscheck(False) def group_mean(mean_t[:, ::1] out, int64_t[::1] counts, ndarray[mean_t, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1, bint is_datetimelike=False, const uint8_t[:, ::1] mask=None, uint8_t[:, ::1] result_mask=None ) -> None: """ Compute the mean per label given a label assignment for each value. NaN values are ignored. Parameters ---------- out : np.ndarray[floating] Values into which this method will write its results. counts : np.ndarray[int64] A zeroed array of the same shape as labels, populated by group sizes during algorithm. values : np.ndarray[floating] 2-d array of the values to find the mean of. labels : np.ndarray[np.intp] Array containing unique label for each group, with its ordering matching up to the corresponding record in `values`. min_count : Py_ssize_t Only used in add and prod. Always -1. is_datetimelike : bool True if `values` contains datetime-like entries. mask : ndarray[bool, ndim=2], optional Not used. result_mask : ndarray[bool, ndim=2], optional Not used. Notes ----- This method modifies the `out` parameter rather than returning an object. `counts` is modified to hold group sizes """ cdef: Py_ssize_t i, j, N, K, lab, ncounts = len(counts) mean_t val, count, y, t, nan_val mean_t[:, ::1] sumx, compensation int64_t[:, ::1] nobs Py_ssize_t len_values = len(values), len_labels = len(labels) assert min_count == -1, "'min_count' only used in add and prod" if len_values != len_labels: raise ValueError("len(index) != len(labels)") # the below is equivalent to `np.zeros_like(out)` but faster nobs = np.zeros((out).shape, dtype=np.int64) sumx = np.zeros((out).shape, dtype=(out).base.dtype) compensation = np.zeros((out).shape, dtype=(out).base.dtype) N, K = (values).shape nan_val = NPY_NAT if is_datetimelike else NAN with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] # not nan if val == val and not (is_datetimelike and val == NPY_NAT): nobs[lab, j] += 1 y = val - compensation[lab, j] t = sumx[lab, j] + y compensation[lab, j] = t - sumx[lab, j] - y sumx[lab, j] = t for i in range(ncounts): for j in range(K): count = nobs[i, j] if nobs[i, j] == 0: out[i, j] = nan_val else: out[i, j] = sumx[i, j] / count @cython.wraparound(False) @cython.boundscheck(False) def group_ohlc(floating[:, ::1] out, int64_t[::1] counts, ndarray[floating, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1) -> None: """ Only aggregates on axis=0 """ cdef: Py_ssize_t i, j, N, K, lab floating val assert min_count == -1, "'min_count' only used in add and prod" if len(labels) == 0: return N, K = (values).shape if out.shape[1] != 4: raise ValueError('Output array must have 4 columns') if K > 1: raise NotImplementedError("Argument 'values' must have only one dimension") out[:] = np.nan with nogil: for i in range(N): lab = labels[i] if lab == -1: continue counts[lab] += 1 val = values[i, 0] if val != val: continue if out[lab, 0] != out[lab, 0]: out[lab, 0] = out[lab, 1] = out[lab, 2] = out[lab, 3] = val else: out[lab, 1] = max(out[lab, 1], val) out[lab, 2] = min(out[lab, 2], val) out[lab, 3] = val @cython.boundscheck(False) @cython.wraparound(False) def group_quantile(ndarray[float64_t, ndim=2] out, ndarray[numeric_t, ndim=1] values, ndarray[intp_t] labels, ndarray[uint8_t] mask, const intp_t[:] sort_indexer, const float64_t[:] qs, str interpolation) -> None: """ Calculate the quantile per group. Parameters ---------- out : np.ndarray[np.float64, ndim=2] Array of aggregated values that will be written to. values : np.ndarray Array containing the values to apply the function against. labels : ndarray[np.intp] Array containing the unique group labels. sort_indexer : ndarray[np.intp] Indices describing sort order by values and labels. qs : ndarray[float64_t] The quantile values to search for. interpolation : {'linear', 'lower', 'highest', 'nearest', 'midpoint'} Notes ----- Rather than explicitly returning a value, this function modifies the provided `out` parameter. """ cdef: Py_ssize_t i, N=len(labels), ngroups, grp_sz, non_na_sz, k, nqs Py_ssize_t grp_start=0, idx=0 intp_t lab InterpolationEnumType interp float64_t q_val, q_idx, frac, val, next_val int64_t[::1] counts, non_na_counts assert values.shape[0] == N if any(not (0 <= q <= 1) for q in qs): wrong = [x for x in qs if not (0 <= x <= 1)][0] raise ValueError( f"Each 'q' must be between 0 and 1. Got '{wrong}' instead" ) inter_methods = { 'linear': INTERPOLATION_LINEAR, 'lower': INTERPOLATION_LOWER, 'higher': INTERPOLATION_HIGHER, 'nearest': INTERPOLATION_NEAREST, 'midpoint': INTERPOLATION_MIDPOINT, } interp = inter_methods[interpolation] nqs = len(qs) ngroups = len(out) counts = np.zeros(ngroups, dtype=np.int64) non_na_counts = np.zeros(ngroups, dtype=np.int64) # First figure out the size of every group with nogil: for i in range(N): lab = labels[i] if lab == -1: # NA group label continue counts[lab] += 1 if not mask[i]: non_na_counts[lab] += 1 with nogil: for i in range(ngroups): # Figure out how many group elements there are grp_sz = counts[i] non_na_sz = non_na_counts[i] if non_na_sz == 0: for k in range(nqs): out[i, k] = NaN else: for k in range(nqs): q_val = qs[k] # Calculate where to retrieve the desired value # Casting to int will intentionally truncate result idx = grp_start + (q_val * (non_na_sz - 1)) val = values[sort_indexer[idx]] # If requested quantile falls evenly on a particular index # then write that index's value out. Otherwise interpolate q_idx = q_val * (non_na_sz - 1) frac = q_idx % 1 if frac == 0.0 or interp == INTERPOLATION_LOWER: out[i, k] = val else: next_val = values[sort_indexer[idx + 1]] if interp == INTERPOLATION_LINEAR: out[i, k] = val + (next_val - val) * frac elif interp == INTERPOLATION_HIGHER: out[i, k] = next_val elif interp == INTERPOLATION_MIDPOINT: out[i, k] = (val + next_val) / 2.0 elif interp == INTERPOLATION_NEAREST: if frac > .5 or (frac == .5 and q_val > .5): # Always OK? out[i, k] = next_val else: out[i, k] = val # Increment the index reference in sorted_arr for the next group grp_start += grp_sz # ---------------------------------------------------------------------- # group_nth, group_last, group_rank # ---------------------------------------------------------------------- cdef inline bint _treat_as_na(iu_64_floating_obj_t val, bint is_datetimelike) nogil: if iu_64_floating_obj_t is object: # Should never be used, but we need to avoid the `val != val` below # or else cython will raise about gil acquisition. raise NotImplementedError elif iu_64_floating_obj_t is int64_t: return is_datetimelike and val == NPY_NAT elif iu_64_floating_obj_t is uint64_t: # There is no NA value for uint64 return False else: return val != val # GH#31710 use memorviews once cython 0.30 is released so we can # use `const iu_64_floating_obj_t[:, :] values` @cython.wraparound(False) @cython.boundscheck(False) def group_last(iu_64_floating_obj_t[:, ::1] out, int64_t[::1] counts, ndarray[iu_64_floating_obj_t, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1) -> None: """ Only aggregates on axis=0 """ cdef: Py_ssize_t i, j, N, K, lab, ncounts = len(counts) iu_64_floating_obj_t val ndarray[iu_64_floating_obj_t, ndim=2] resx ndarray[int64_t, ndim=2] nobs bint runtime_error = False # TODO(cython3): # Instead of `labels.shape[0]` use `len(labels)` if not len(values) == labels.shape[0]: raise AssertionError("len(index) != len(labels)") min_count = max(min_count, 1) nobs = np.zeros((out).shape, dtype=np.int64) if iu_64_floating_obj_t is object: resx = np.empty((out).shape, dtype=object) else: resx = np.empty_like(out) N, K = (values).shape if iu_64_floating_obj_t is object: # TODO(cython3): De-duplicate once conditional-nogil is available for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] if not checknull(val): # NB: use _treat_as_na here once # conditional-nogil is available. nobs[lab, j] += 1 resx[lab, j] = val for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: out[i, j] = None else: out[i, j] = resx[i, j] else: with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] if not _treat_as_na(val, True): # TODO: Sure we always want is_datetimelike=True? nobs[lab, j] += 1 resx[lab, j] = val for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: if iu_64_floating_obj_t is int64_t: out[i, j] = NPY_NAT elif iu_64_floating_obj_t is uint64_t: runtime_error = True break else: out[i, j] = NAN else: out[i, j] = resx[i, j] if runtime_error: # We cannot raise directly above because that is within a nogil # block. raise RuntimeError("empty group with uint64_t") # GH#31710 use memorviews once cython 0.30 is released so we can # use `const iu_64_floating_obj_t[:, :] values` @cython.wraparound(False) @cython.boundscheck(False) def group_nth(iu_64_floating_obj_t[:, ::1] out, int64_t[::1] counts, ndarray[iu_64_floating_obj_t, ndim=2] values, const intp_t[::1] labels, int64_t min_count=-1, int64_t rank=1, ) -> None: """ Only aggregates on axis=0 """ cdef: Py_ssize_t i, j, N, K, lab, ncounts = len(counts) iu_64_floating_obj_t val ndarray[iu_64_floating_obj_t, ndim=2] resx ndarray[int64_t, ndim=2] nobs bint runtime_error = False # TODO(cython3): # Instead of `labels.shape[0]` use `len(labels)` if not len(values) == labels.shape[0]: raise AssertionError("len(index) != len(labels)") min_count = max(min_count, 1) nobs = np.zeros((out).shape, dtype=np.int64) if iu_64_floating_obj_t is object: resx = np.empty((out).shape, dtype=object) else: resx = np.empty_like(out) N, K = (values).shape if iu_64_floating_obj_t is object: # TODO(cython3): De-duplicate once conditional-nogil is available for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] if not checknull(val): # NB: use _treat_as_na here once # conditional-nogil is available. nobs[lab, j] += 1 if nobs[lab, j] == rank: resx[lab, j] = val for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: out[i, j] = None else: out[i, j] = resx[i, j] else: with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] if not _treat_as_na(val, True): # TODO: Sure we always want is_datetimelike=True? nobs[lab, j] += 1 if nobs[lab, j] == rank: resx[lab, j] = val for i in range(ncounts): for j in range(K): if nobs[i, j] < min_count: if iu_64_floating_obj_t is int64_t: out[i, j] = NPY_NAT elif iu_64_floating_obj_t is uint64_t: runtime_error = True break else: out[i, j] = NAN else: out[i, j] = resx[i, j] if runtime_error: # We cannot raise directly above because that is within a nogil # block. raise RuntimeError("empty group with uint64_t") @cython.boundscheck(False) @cython.wraparound(False) def group_rank(float64_t[:, ::1] out, ndarray[iu_64_floating_obj_t, ndim=2] values, const intp_t[::1] labels, int ngroups, bint is_datetimelike, str ties_method="average", bint ascending=True, bint pct=False, str na_option="keep") -> None: """ Provides the rank of values within each group. Parameters ---------- out : np.ndarray[np.float64, ndim=2] Values to which this method will write its results. values : np.ndarray of iu_64_floating_obj_t values to be ranked labels : np.ndarray[np.intp] Array containing unique label for each group, with its ordering matching up to the corresponding record in `values` ngroups : int This parameter is not used, is needed to match signatures of other groupby functions. is_datetimelike : bool True if `values` contains datetime-like entries. ties_method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' * average: average rank of group * min: lowest rank in group * max: highest rank in group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups ascending : bool, default True False for ranks by high (1) to low (N) na_option : {'keep', 'top', 'bottom'}, default 'keep' pct : bool, default False Compute percentage rank of data within each group na_option : {'keep', 'top', 'bottom'}, default 'keep' * keep: leave NA values where they are * top: smallest rank if ascending * bottom: smallest rank if descending Notes ----- This method modifies the `out` parameter rather than returning an object """ cdef: Py_ssize_t i, k, N ndarray[float64_t, ndim=1] result N = values.shape[1] for k in range(N): result = rank_1d( values=values[:, k], labels=labels, is_datetimelike=is_datetimelike, ties_method=ties_method, ascending=ascending, pct=pct, na_option=na_option ) for i in range(len(result)): # TODO: why can't we do out[:, k] = result? out[i, k] = result[i] # ---------------------------------------------------------------------- # group_min, group_max # ---------------------------------------------------------------------- # TODO: consider implementing for more dtypes @cython.wraparound(False) @cython.boundscheck(False) cdef group_min_max(iu_64_floating_t[:, ::1] out, int64_t[::1] counts, ndarray[iu_64_floating_t, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1, bint is_datetimelike=False, bint compute_max=True, const uint8_t[:, ::1] mask=None, uint8_t[:, ::1] result_mask=None): """ Compute minimum/maximum of columns of `values`, in row groups `labels`. Parameters ---------- out : np.ndarray[iu_64_floating_t, ndim=2] Array to store result in. counts : np.ndarray[int64] Input as a zeroed array, populated by group sizes during algorithm values : array Values to find column-wise min/max of. labels : np.ndarray[np.intp] Labels to group by. min_count : Py_ssize_t, default -1 The minimum number of non-NA group elements, NA result if threshold is not met is_datetimelike : bool True if `values` contains datetime-like entries. compute_max : bint, default True True to compute group-wise max, False to compute min mask : ndarray[bool, ndim=2], optional If not None, indices represent missing values, otherwise the mask will not be used result_mask : ndarray[bool, ndim=2], optional If not None, these specify locations in the output that are NA. Modified in-place. Notes ----- This method modifies the `out` parameter, rather than returning an object. `counts` is modified to hold group sizes """ cdef: Py_ssize_t i, j, N, K, lab, ngroups = len(counts) iu_64_floating_t val, nan_val ndarray[iu_64_floating_t, ndim=2] group_min_or_max bint runtime_error = False int64_t[:, ::1] nobs bint uses_mask = mask is not None bint isna_entry # TODO(cython3): # Instead of `labels.shape[0]` use `len(labels)` if not len(values) == labels.shape[0]: raise AssertionError("len(index) != len(labels)") min_count = max(min_count, 1) nobs = np.zeros((out).shape, dtype=np.int64) group_min_or_max = np.empty_like(out) if iu_64_floating_t is int64_t: group_min_or_max[:] = -_int64_max if compute_max else _int64_max nan_val = NPY_NAT elif iu_64_floating_t is uint64_t: # NB: We do not define nan_val because there is no such thing # for uint64_t. We carefully avoid having to reference it in this # case. group_min_or_max[:] = 0 if compute_max else np.iinfo(np.uint64).max else: group_min_or_max[:] = -np.inf if compute_max else np.inf nan_val = NAN N, K = (values).shape with nogil: for i in range(N): lab = labels[i] if lab < 0: continue counts[lab] += 1 for j in range(K): val = values[i, j] if uses_mask: isna_entry = mask[i, j] else: isna_entry = _treat_as_na(val, is_datetimelike) if not isna_entry: nobs[lab, j] += 1 if compute_max: if val > group_min_or_max[lab, j]: group_min_or_max[lab, j] = val else: if val < group_min_or_max[lab, j]: group_min_or_max[lab, j] = val for i in range(ngroups): for j in range(K): if nobs[i, j] < min_count: if iu_64_floating_t is uint64_t: runtime_error = True break else: if uses_mask: result_mask[i, j] = True else: out[i, j] = nan_val else: out[i, j] = group_min_or_max[i, j] if runtime_error: # We cannot raise directly above because that is within a nogil # block. raise RuntimeError("empty group with uint64_t") @cython.wraparound(False) @cython.boundscheck(False) def group_max(iu_64_floating_t[:, ::1] out, int64_t[::1] counts, ndarray[iu_64_floating_t, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1, bint is_datetimelike=False, const uint8_t[:, ::1] mask=None, uint8_t[:, ::1] result_mask=None) -> None: """See group_min_max.__doc__""" group_min_max( out, counts, values, labels, min_count=min_count, is_datetimelike=is_datetimelike, compute_max=True, mask=mask, result_mask=result_mask, ) @cython.wraparound(False) @cython.boundscheck(False) def group_min(iu_64_floating_t[:, ::1] out, int64_t[::1] counts, ndarray[iu_64_floating_t, ndim=2] values, const intp_t[::1] labels, Py_ssize_t min_count=-1, bint is_datetimelike=False, const uint8_t[:, ::1] mask=None, uint8_t[:, ::1] result_mask=None) -> None: """See group_min_max.__doc__""" group_min_max( out, counts, values, labels, min_count=min_count, is_datetimelike=is_datetimelike, compute_max=False, mask=mask, result_mask=result_mask, ) @cython.boundscheck(False) @cython.wraparound(False) cdef group_cummin_max(iu_64_floating_t[:, ::1] out, ndarray[iu_64_floating_t, ndim=2] values, uint8_t[:, ::1] mask, const intp_t[::1] labels, int ngroups, bint is_datetimelike, bint skipna, bint compute_max): """ Cumulative minimum/maximum of columns of `values`, in row groups `labels`. Parameters ---------- out : np.ndarray[iu_64_floating_t, ndim=2] Array to store cummin/max in. values : np.ndarray[iu_64_floating_t, ndim=2] Values to take cummin/max of. mask : np.ndarray[bool] or None If not None, indices represent missing values, otherwise the mask will not be used labels : np.ndarray[np.intp] Labels to group by. ngroups : int Number of groups, larger than all entries of `labels`. is_datetimelike : bool True if `values` contains datetime-like entries. skipna : bool If True, ignore nans in `values`. compute_max : bool True if cumulative maximum should be computed, False if cumulative minimum should be computed Notes ----- This method modifies the `out` parameter, rather than returning an object. """ cdef: iu_64_floating_t[:, ::1] accum accum = np.empty((ngroups, (values).shape[1]), dtype=values.dtype) if iu_64_floating_t is int64_t: accum[:] = -_int64_max if compute_max else _int64_max elif iu_64_floating_t is uint64_t: accum[:] = 0 if compute_max else np.iinfo(np.uint64).max else: accum[:] = -np.inf if compute_max else np.inf if mask is not None: masked_cummin_max(out, values, mask, labels, accum, skipna, compute_max) else: cummin_max(out, values, labels, accum, skipna, is_datetimelike, compute_max) @cython.boundscheck(False) @cython.wraparound(False) cdef cummin_max(iu_64_floating_t[:, ::1] out, ndarray[iu_64_floating_t, ndim=2] values, const intp_t[::1] labels, iu_64_floating_t[:, ::1] accum, bint skipna, bint is_datetimelike, bint compute_max): """ Compute the cumulative minimum/maximum of columns of `values`, in row groups `labels`. """ cdef: Py_ssize_t i, j, N, K iu_64_floating_t val, mval, na_val uint8_t[:, ::1] seen_na intp_t lab bint na_possible if iu_64_floating_t is float64_t or iu_64_floating_t is float32_t: na_val = NaN na_possible = True elif is_datetimelike: na_val = NPY_NAT na_possible = True # Will never be used, just to avoid uninitialized warning else: na_val = 0 na_possible = False if na_possible: seen_na = np.zeros((accum).shape, dtype=np.uint8) N, K = (values).shape with nogil: for i in range(N): lab = labels[i] if lab < 0: continue for j in range(K): if not skipna and na_possible and seen_na[lab, j]: out[i, j] = na_val else: val = values[i, j] if not _treat_as_na(val, is_datetimelike): mval = accum[lab, j] if compute_max: if val > mval: accum[lab, j] = mval = val else: if val < mval: accum[lab, j] = mval = val out[i, j] = mval else: seen_na[lab, j] = 1 out[i, j] = val @cython.boundscheck(False) @cython.wraparound(False) cdef masked_cummin_max(iu_64_floating_t[:, ::1] out, ndarray[iu_64_floating_t, ndim=2] values, uint8_t[:, ::1] mask, const intp_t[::1] labels, iu_64_floating_t[:, ::1] accum, bint skipna, bint compute_max): """ Compute the cumulative minimum/maximum of columns of `values`, in row groups `labels` with a masked algorithm. """ cdef: Py_ssize_t i, j, N, K iu_64_floating_t val, mval uint8_t[:, ::1] seen_na intp_t lab N, K = (values).shape seen_na = np.zeros((accum).shape, dtype=np.uint8) with nogil: for i in range(N): lab = labels[i] if lab < 0: continue for j in range(K): if not skipna and seen_na[lab, j]: mask[i, j] = 1 else: if not mask[i, j]: val = values[i, j] mval = accum[lab, j] if compute_max: if val > mval: accum[lab, j] = mval = val else: if val < mval: accum[lab, j] = mval = val out[i, j] = mval else: seen_na[lab, j] = 1 @cython.boundscheck(False) @cython.wraparound(False) def group_cummin(iu_64_floating_t[:, ::1] out, ndarray[iu_64_floating_t, ndim=2] values, const intp_t[::1] labels, int ngroups, bint is_datetimelike, uint8_t[:, ::1] mask=None, bint skipna=True) -> None: """See group_cummin_max.__doc__""" group_cummin_max( out, values, mask, labels, ngroups, is_datetimelike, skipna, compute_max=False ) @cython.boundscheck(False) @cython.wraparound(False) def group_cummax(iu_64_floating_t[:, ::1] out, ndarray[iu_64_floating_t, ndim=2] values, const intp_t[::1] labels, int ngroups, bint is_datetimelike, uint8_t[:, ::1] mask=None, bint skipna=True) -> None: """See group_cummin_max.__doc__""" group_cummin_max( out, values, mask, labels, ngroups, is_datetimelike, skipna, compute_max=True )