"""Special case IR generation of calls to specific builtin functions. Most special cases should be handled using the data driven "primitive ops" system, but certain operations require special handling that has access to the AST/IR directly and can make decisions/optimizations based on it. These special cases can be implemented here. For example, we use specializers to statically emit the length of a fixed length tuple and to emit optimized code for any()/all() calls with generator comprehensions as the argument. See comment below for more documentation. """ from typing import Callable, Optional, Dict, Tuple, List from mypy.nodes import ( CallExpr, RefExpr, MemberExpr, NameExpr, TupleExpr, GeneratorExpr, ListExpr, DictExpr, StrExpr, IntExpr, ARG_POS, ARG_NAMED, Expression ) from mypy.types import AnyType, TypeOfAny from mypyc.ir.ops import ( Value, Register, BasicBlock, Integer, RaiseStandardError, Unreachable ) from mypyc.ir.rtypes import ( RType, RTuple, str_rprimitive, list_rprimitive, dict_rprimitive, set_rprimitive, bool_rprimitive, c_int_rprimitive, is_dict_rprimitive, is_list_rprimitive ) from mypyc.irbuild.format_str_tokenizer import ( tokenizer_format_call, join_formatted_strings, convert_format_expr_to_str, FormatOp ) from mypyc.primitives.dict_ops import ( dict_keys_op, dict_values_op, dict_items_op, dict_setdefault_spec_init_op ) from mypyc.primitives.list_ops import new_list_set_item_op from mypyc.primitives.tuple_ops import new_tuple_set_item_op from mypyc.irbuild.builder import IRBuilder from mypyc.irbuild.for_helpers import ( translate_list_comprehension, translate_set_comprehension, comprehension_helper, sequence_from_generator_preallocate_helper ) # Specializers are attempted before compiling the arguments to the # function. Specializers can return None to indicate that they failed # and the call should be compiled normally. Otherwise they should emit # code for the call and return a Value containing the result. # # Specializers take three arguments: the IRBuilder, the CallExpr being # compiled, and the RefExpr that is the left hand side of the call. Specializer = Callable[['IRBuilder', CallExpr, RefExpr], Optional[Value]] # Dictionary containing all configured specializers. # # Specializers can operate on methods as well, and are keyed on the # name and RType in that case. specializers: Dict[Tuple[str, Optional[RType]], List[Specializer]] = {} def _apply_specialization(builder: 'IRBuilder', expr: CallExpr, callee: RefExpr, name: Optional[str], typ: Optional[RType] = None) -> Optional[Value]: # TODO: Allow special cases to have default args or named args. Currently they don't since # they check that everything in arg_kinds is ARG_POS. # If there is a specializer for this function, try calling it. # Return the first successful one. if name and (name, typ) in specializers: for specializer in specializers[name, typ]: val = specializer(builder, expr, callee) if val is not None: return val return None def apply_function_specialization(builder: 'IRBuilder', expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Invoke the Specializer callback for a function if one has been registered""" return _apply_specialization(builder, expr, callee, callee.fullname) def apply_method_specialization(builder: 'IRBuilder', expr: CallExpr, callee: MemberExpr, typ: Optional[RType] = None) -> Optional[Value]: """Invoke the Specializer callback for a method if one has been registered""" name = callee.fullname if typ is None else callee.name return _apply_specialization(builder, expr, callee, name, typ) def specialize_function( name: str, typ: Optional[RType] = None) -> Callable[[Specializer], Specializer]: """Decorator to register a function as being a specializer. There may exist multiple specializers for one function. When translating method calls, the earlier appended specializer has higher priority. """ def wrapper(f: Specializer) -> Specializer: specializers.setdefault((name, typ), []).append(f) return f return wrapper @specialize_function('builtins.globals') def translate_globals(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: if len(expr.args) == 0: return builder.load_globals_dict() return None @specialize_function('builtins.len') def translate_len( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: if (len(expr.args) == 1 and expr.arg_kinds == [ARG_POS]): arg = expr.args[0] expr_rtype = builder.node_type(arg) if isinstance(expr_rtype, RTuple): # len() of fixed-length tuple can be trivially determined # statically, though we still need to evaluate it. builder.accept(arg) return Integer(len(expr_rtype.types)) else: if is_list_rprimitive(builder.node_type(arg)): borrow = True else: borrow = False obj = builder.accept(arg, can_borrow=borrow) return builder.builtin_len(obj, expr.line) return None @specialize_function('builtins.list') def dict_methods_fast_path( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Specialize a common case when list() is called on a dictionary view method call. For example: foo = list(bar.keys()) """ if not (len(expr.args) == 1 and expr.arg_kinds == [ARG_POS]): return None arg = expr.args[0] if not (isinstance(arg, CallExpr) and not arg.args and isinstance(arg.callee, MemberExpr)): return None base = arg.callee.expr attr = arg.callee.name rtype = builder.node_type(base) if not (is_dict_rprimitive(rtype) and attr in ('keys', 'values', 'items')): return None obj = builder.accept(base) # Note that it is not safe to use fast methods on dict subclasses, # so the corresponding helpers in CPy.h fallback to (inlined) # generic logic. if attr == 'keys': return builder.call_c(dict_keys_op, [obj], expr.line) elif attr == 'values': return builder.call_c(dict_values_op, [obj], expr.line) else: return builder.call_c(dict_items_op, [obj], expr.line) @specialize_function('builtins.list') def translate_list_from_generator_call( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for simplest list comprehension. For example: list(f(x) for x in some_list/some_tuple/some_str) 'translate_list_comprehension()' would take care of other cases if this fails. """ if (len(expr.args) == 1 and expr.arg_kinds[0] == ARG_POS and isinstance(expr.args[0], GeneratorExpr)): return sequence_from_generator_preallocate_helper( builder, expr.args[0], empty_op_llbuilder=builder.builder.new_list_op_with_length, set_item_op=new_list_set_item_op) return None @specialize_function('builtins.tuple') def translate_tuple_from_generator_call( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for simplest tuple creation from a generator. For example: tuple(f(x) for x in some_list/some_tuple/some_str) 'translate_safe_generator_call()' would take care of other cases if this fails. """ if (len(expr.args) == 1 and expr.arg_kinds[0] == ARG_POS and isinstance(expr.args[0], GeneratorExpr)): return sequence_from_generator_preallocate_helper( builder, expr.args[0], empty_op_llbuilder=builder.builder.new_tuple_with_length, set_item_op=new_tuple_set_item_op) return None @specialize_function('builtins.set') def translate_set_from_generator_call( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for set creation from a generator. For example: set(f(...) for ... in iterator/nested_generators...) """ if (len(expr.args) == 1 and expr.arg_kinds[0] == ARG_POS and isinstance(expr.args[0], GeneratorExpr)): return translate_set_comprehension(builder, expr.args[0]) return None @specialize_function('builtins.min') @specialize_function('builtins.max') def faster_min_max(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: if expr.arg_kinds == [ARG_POS, ARG_POS]: x, y = builder.accept(expr.args[0]), builder.accept(expr.args[1]) result = Register(builder.node_type(expr)) # CPython evaluates arguments reversely when calling min(...) or max(...) if callee.fullname == 'builtins.min': comparison = builder.binary_op(y, x, '<', expr.line) else: comparison = builder.binary_op(y, x, '>', expr.line) true_block, false_block, next_block = BasicBlock(), BasicBlock(), BasicBlock() builder.add_bool_branch(comparison, true_block, false_block) builder.activate_block(true_block) builder.assign(result, builder.coerce(y, result.type, expr.line), expr.line) builder.goto(next_block) builder.activate_block(false_block) builder.assign(result, builder.coerce(x, result.type, expr.line), expr.line) builder.goto(next_block) builder.activate_block(next_block) return result return None @specialize_function('builtins.tuple') @specialize_function('builtins.frozenset') @specialize_function('builtins.dict') @specialize_function('builtins.min') @specialize_function('builtins.max') @specialize_function('builtins.sorted') @specialize_function('collections.OrderedDict') @specialize_function('join', str_rprimitive) @specialize_function('extend', list_rprimitive) @specialize_function('update', dict_rprimitive) @specialize_function('update', set_rprimitive) def translate_safe_generator_call( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special cases for things that consume iterators where we know we can safely compile a generator into a list. """ if (len(expr.args) > 0 and expr.arg_kinds[0] == ARG_POS and isinstance(expr.args[0], GeneratorExpr)): if isinstance(callee, MemberExpr): return builder.gen_method_call( builder.accept(callee.expr), callee.name, ([translate_list_comprehension(builder, expr.args[0])] + [builder.accept(arg) for arg in expr.args[1:]]), builder.node_type(expr), expr.line, expr.arg_kinds, expr.arg_names) else: return builder.call_refexpr_with_args( expr, callee, ([translate_list_comprehension(builder, expr.args[0])] + [builder.accept(arg) for arg in expr.args[1:]])) return None @specialize_function('builtins.any') def translate_any_call(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: if (len(expr.args) == 1 and expr.arg_kinds == [ARG_POS] and isinstance(expr.args[0], GeneratorExpr)): return any_all_helper(builder, expr.args[0], builder.false, lambda x: x, builder.true) return None @specialize_function('builtins.all') def translate_all_call(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: if (len(expr.args) == 1 and expr.arg_kinds == [ARG_POS] and isinstance(expr.args[0], GeneratorExpr)): return any_all_helper( builder, expr.args[0], builder.true, lambda x: builder.unary_op(x, 'not', expr.line), builder.false ) return None def any_all_helper(builder: IRBuilder, gen: GeneratorExpr, initial_value: Callable[[], Value], modify: Callable[[Value], Value], new_value: Callable[[], Value]) -> Value: retval = Register(bool_rprimitive) builder.assign(retval, initial_value(), -1) loop_params = list(zip(gen.indices, gen.sequences, gen.condlists)) true_block, false_block, exit_block = BasicBlock(), BasicBlock(), BasicBlock() def gen_inner_stmts() -> None: comparison = modify(builder.accept(gen.left_expr)) builder.add_bool_branch(comparison, true_block, false_block) builder.activate_block(true_block) builder.assign(retval, new_value(), -1) builder.goto(exit_block) builder.activate_block(false_block) comprehension_helper(builder, loop_params, gen_inner_stmts, gen.line) builder.goto_and_activate(exit_block) return retval @specialize_function('builtins.sum') def translate_sum_call(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: # specialized implementation is used if: # - only one or two arguments given (if not, sum() has been given invalid arguments) # - first argument is a Generator (there is no benefit to optimizing the performance of eg. # sum([1, 2, 3]), so non-Generator Iterables are not handled) if not (len(expr.args) in (1, 2) and expr.arg_kinds[0] == ARG_POS and isinstance(expr.args[0], GeneratorExpr)): return None # handle 'start' argument, if given if len(expr.args) == 2: # ensure call to sum() was properly constructed if not expr.arg_kinds[1] in (ARG_POS, ARG_NAMED): return None start_expr = expr.args[1] else: start_expr = IntExpr(0) gen_expr = expr.args[0] target_type = builder.node_type(expr) retval = Register(target_type) builder.assign(retval, builder.coerce(builder.accept(start_expr), target_type, -1), -1) def gen_inner_stmts() -> None: call_expr = builder.accept(gen_expr.left_expr) builder.assign(retval, builder.binary_op(retval, call_expr, '+', -1), -1) loop_params = list(zip(gen_expr.indices, gen_expr.sequences, gen_expr.condlists)) comprehension_helper(builder, loop_params, gen_inner_stmts, gen_expr.line) return retval @specialize_function('dataclasses.field') @specialize_function('attr.ib') @specialize_function('attr.attrib') @specialize_function('attr.Factory') def translate_dataclasses_field_call( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for 'dataclasses.field', 'attr.attrib', and 'attr.Factory' function calls because the results of such calls are type-checked by mypy using the types of the arguments to their respective functions, resulting in attempted coercions by mypyc that throw a runtime error. """ builder.types[expr] = AnyType(TypeOfAny.from_error) return None @specialize_function('builtins.next') def translate_next_call(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for calling next() on a generator expression, an idiom that shows up some in mypy. For example, next(x for x in l if x.id == 12, None) will generate code that searches l for an element where x.id == 12 and produce the first such object, or None if no such element exists. """ if not (expr.arg_kinds in ([ARG_POS], [ARG_POS, ARG_POS]) and isinstance(expr.args[0], GeneratorExpr)): return None gen = expr.args[0] retval = Register(builder.node_type(expr)) default_val = builder.accept(expr.args[1]) if len(expr.args) > 1 else None exit_block = BasicBlock() def gen_inner_stmts() -> None: # next takes the first element of the generator, so if # something gets produced, we are done. builder.assign(retval, builder.accept(gen.left_expr), gen.left_expr.line) builder.goto(exit_block) loop_params = list(zip(gen.indices, gen.sequences, gen.condlists)) comprehension_helper(builder, loop_params, gen_inner_stmts, gen.line) # Now we need the case for when nothing got hit. If there was # a default value, we produce it, and otherwise we raise # StopIteration. if default_val: builder.assign(retval, default_val, gen.left_expr.line) builder.goto(exit_block) else: builder.add(RaiseStandardError(RaiseStandardError.STOP_ITERATION, None, expr.line)) builder.add(Unreachable()) builder.activate_block(exit_block) return retval @specialize_function('builtins.isinstance') def translate_isinstance(builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for builtins.isinstance. Prevent coercions on the thing we are checking the instance of - there is no need to coerce something to a new type before checking what type it is, and the coercion could lead to bugs. """ if (len(expr.args) == 2 and expr.arg_kinds == [ARG_POS, ARG_POS] and isinstance(expr.args[1], (RefExpr, TupleExpr))): builder.types[expr.args[0]] = AnyType(TypeOfAny.from_error) irs = builder.flatten_classes(expr.args[1]) if irs is not None: can_borrow = all(ir.is_ext_class and not ir.inherits_python and not ir.allow_interpreted_subclasses for ir in irs) obj = builder.accept(expr.args[0], can_borrow=can_borrow) return builder.builder.isinstance_helper(obj, irs, expr.line) return None @specialize_function('setdefault', dict_rprimitive) def translate_dict_setdefault( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for 'dict.setdefault' which would only construct default empty collection when needed. The dict_setdefault_spec_init_op checks whether the dict contains the key and would construct the empty collection only once. For example, this specializer works for the following cases: d.setdefault(key, set()).add(value) d.setdefault(key, []).append(value) d.setdefault(key, {})[inner_key] = inner_val """ if (len(expr.args) == 2 and expr.arg_kinds == [ARG_POS, ARG_POS] and isinstance(callee, MemberExpr)): arg = expr.args[1] if isinstance(arg, ListExpr): if len(arg.items): return None data_type = Integer(1, c_int_rprimitive, expr.line) elif isinstance(arg, DictExpr): if len(arg.items): return None data_type = Integer(2, c_int_rprimitive, expr.line) elif (isinstance(arg, CallExpr) and isinstance(arg.callee, NameExpr) and arg.callee.fullname == 'builtins.set'): if len(arg.args): return None data_type = Integer(3, c_int_rprimitive, expr.line) else: return None callee_dict = builder.accept(callee.expr) key_val = builder.accept(expr.args[0]) return builder.call_c(dict_setdefault_spec_init_op, [callee_dict, key_val, data_type], expr.line) return None @specialize_function('format', str_rprimitive) def translate_str_format( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: if (isinstance(callee, MemberExpr) and isinstance(callee.expr, StrExpr) and expr.arg_kinds.count(ARG_POS) == len(expr.arg_kinds)): format_str = callee.expr.value tokens = tokenizer_format_call(format_str) if tokens is None: return None literals, format_ops = tokens # Convert variables to strings substitutions = convert_format_expr_to_str(builder, format_ops, expr.args, expr.line) if substitutions is None: return None return join_formatted_strings(builder, literals, substitutions, expr.line) return None @specialize_function('join', str_rprimitive) def translate_fstring( builder: IRBuilder, expr: CallExpr, callee: RefExpr) -> Optional[Value]: """Special case for f-string, which is translated into str.join() in mypy AST. This specializer optimizes simplest f-strings which don't contain any format operation. """ if (isinstance(callee, MemberExpr) and isinstance(callee.expr, StrExpr) and callee.expr.value == '' and expr.arg_kinds == [ARG_POS] and isinstance(expr.args[0], ListExpr)): for item in expr.args[0].items: if isinstance(item, StrExpr): continue elif isinstance(item, CallExpr): if (not isinstance(item.callee, MemberExpr) or item.callee.name != 'format'): return None elif (not isinstance(item.callee.expr, StrExpr) or item.callee.expr.value != '{:{}}'): return None if not isinstance(item.args[1], StrExpr) or item.args[1].value != '': return None else: return None format_ops = [] exprs: List[Expression] = [] for item in expr.args[0].items: if isinstance(item, StrExpr) and item.value != '': format_ops.append(FormatOp.STR) exprs.append(item) elif isinstance(item, CallExpr): format_ops.append(FormatOp.STR) exprs.append(item.args[0]) substitutions = convert_format_expr_to_str(builder, format_ops, exprs, expr.line) if substitutions is None: return None return join_formatted_strings(builder, None, substitutions, expr.line) return None