"""Preprocess raw data scraped from Funda""" import re from datetime import datetime, timedelta from typing import Union import pandas as pd from dateutil.parser import parse from funda_scraper.config.core import config def clean_price(x: str) -> int: """Clean the 'price' and transform from string to integer.""" try: return int(str(x).split(" ")[1].replace(".", "")) except ValueError: return 0 except IndexError: return 0 def clean_year(x: str) -> int: """Clean the 'year' and transform from string to integer""" if len(x) == 4: return int(x) elif x.find("-") != -1: return int(x.split("-")[0]) elif x.find("before") != -1: return int(x.split(" ")[1]) else: return 0 def clean_living_area(x: str) -> int: """Clean the 'living_area' and transform from string to integer""" try: return int(str(x).replace(",", "").split(" m²")[0]) except ValueError: return 0 except IndexError: return 0 def find_keyword_from_regex(x: str, pattern: str) -> int: result = re.findall(pattern, x) if len(result) > 0: result = "".join(result[0]) x = result.split(" ")[0] else: x = 0 return int(x) def find_n_room(x: str) -> int: """Find the number of rooms from a string""" pattern = r"(\d{1,2}\s{1}kamers{0,1})|(\d{1,2}\s{1}rooms{0,1})" return find_keyword_from_regex(x, pattern) def find_n_bedroom(x: str) -> int: """Find the number of bedrooms from a string""" pattern = r"(\d{1,2}\s{1}slaapkamers{0,1})|(\d{1,2}\s{1}bedrooms{0,1})" return find_keyword_from_regex(x, pattern) def find_n_bathroom(x: str) -> int: """Find the number of bathrooms from a string""" pattern = r"(\d{1,2}\s{1}badkamers{0,1})|(\d{1,2}\s{1}bathrooms{0,1})" return find_keyword_from_regex(x, pattern) def map_dutch_month(x: str) -> str: """Map the month from Dutch to English.""" month_mapping = { "januari": "January", "februari": "February", "maart": "March", "mei": "May", "juni": "June", "juli": "July", "augustus": "August", "oktober": "October", } for k, v in month_mapping.items(): if x.find(k) != -1: x = x.replace(k, v) return x def get_neighbor(x: str) -> str: """Find the neighborhood name.""" city = x.split("/")[0].replace("-", " ") return x.lower().split(city)[-1] def clean_energy_label(x: str) -> str: """Clean the energy labels.""" try: x = x.split(" ")[0] if x.find("A+") != -1: x = ">A+" return x except IndexError: return x def clean_list_date(x: str) -> Union[datetime, str]: """Transform the date from string to datetime object.""" x = x.replace("weken", "week") x = x.replace("maanden", "month") x = x.replace("Vandaag", "Today") x = x.replace("+", "") x = map_dutch_month(x) def delta_now(d: int): t = timedelta(days=d) return datetime.now() - t weekdays_dict = { "maandag": "Monday", "dinsdag": "Tuesday", "woensdag": "Wednesday", "donderdag": "Thursday", "vrijdag": "Friday", "zaterdag": "Saturday", "zondag": "Sunday", } try: if x.lower() in weekdays_dict.keys(): date_string = weekdays_dict.get(x.lower()) parsed_date = parse(date_string, fuzzy=True) delta = datetime.now().weekday() - parsed_date.weekday() x = delta_now(delta) elif x.find("month") != -1: x = delta_now(int(x.split("month")[0].strip()[0]) * 30) elif x.find("week") != -1: x = delta_now(int(x.split("week")[0].strip()[0]) * 7) elif x.find("Today") != -1: x = delta_now(1) elif x.find("day") != -1: x = delta_now(int(x.split("day")[0].strip())) else: x = datetime.strptime(x, "%d %B %Y") return x except ValueError: return "na" def preprocess_data(df: pd.DataFrame, is_past: bool) -> pd.DataFrame: """ Clean the raw dataframe from scraping. Indicate whether the historical data is included since the columns would be different. :param df: raw dataframe from scraping :param is_past: whether it scraped past data :return: clean dataframe """ df = df.dropna() keep_cols = config.keep_cols.selling_data keep_cols_sold = keep_cols + config.keep_cols.sold_data # Info df["house_id"] = df["url"].apply(lambda x: int(x.split("/")[-2].split("-")[1])) df["house_type"] = df["url"].apply(lambda x: x.split("/")[-2].split("-")[0]) df = df[df["house_type"].isin(["appartement", "huis"])] # Price price_col = "price_sold" if is_past else "price" df["price"] = df[price_col].apply(clean_price) df = df[df["price"] != 0] df["living_area"] = df["living_area"].apply(clean_living_area) df["perceel_area"] = df["perceel_area"].apply(clean_living_area) df = df[df["living_area"] != 0] df = df[df["perceel_area"] != 0] df["price_m2"] = round(df.price / df.living_area, 1) df["price_m2_total"] = round(df.price / (df.living_area + df.perceel_area), 1) # Location df["zip"] = df["zip_code"].apply(lambda x: x[:4]) # House layout df["room"] = df["num_of_rooms"].apply(find_n_room) df["bedroom"] = df["num_of_rooms"].apply(find_n_bedroom) df["bathroom"] = df["num_of_bathrooms"].apply(find_n_bathroom) df["energy_label"] = df["energy_label"].apply(clean_energy_label) # Time df["year_built"] = df["year"].apply(clean_year).astype(int) df["house_age"] = datetime.now().year - df["year_built"] # if is_past: # # Only check past data # df = df[(df["date_sold"] != "na") & (df["date_list"] != "na")] # df["date_list"] = df["date_list"].apply(clean_list_date) # df["date_sold"] = df["date_sold"].apply(clean_list_date) # df = df.dropna() # df["date_list"] = pd.to_datetime(df["date_list"]) # df["date_sold"] = pd.to_datetime(df["date_sold"]) # df["ym_sold"] = df["date_sold"].apply(lambda x: x.to_period("M").to_timestamp()) # df["year_sold"] = df["date_sold"].apply(lambda x: x.year) # # # Term # df["term_days"] = df["date_sold"] - df["date_list"] # df["term_days"] = df["term_days"].apply(lambda x: x.days) # keep_cols = keep_cols_sold # df["date_sold"] = df["date_sold"].dt.date # # else: # # Only check current data # df["date_list"] = df["listed_since"].apply(clean_list_date) # df = df[df["date_list"] != "na"] # df["date_list"] = pd.to_datetime(df["date_list"]) # df["ym_list"] = df["date_list"].apply(lambda x: x.to_period("M").to_timestamp()) # df["year_list"] = df["date_list"].apply(lambda x: x.year) # df["date_list"] = df["date_list"].dt.date return df[keep_cols].reset_index(drop=True)