155 lines
5.0 KiB
Python
155 lines
5.0 KiB
Python
|
"""Parallel building utilities."""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import os
|
||
|
import time
|
||
|
import traceback
|
||
|
from math import sqrt
|
||
|
from typing import TYPE_CHECKING, Any, Callable
|
||
|
|
||
|
try:
|
||
|
import multiprocessing
|
||
|
HAS_MULTIPROCESSING = True
|
||
|
except ImportError:
|
||
|
HAS_MULTIPROCESSING = False
|
||
|
|
||
|
from sphinx.errors import SphinxParallelError
|
||
|
from sphinx.util import logging
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from collections.abc import Sequence
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
# our parallel functionality only works for the forking Process
|
||
|
parallel_available = multiprocessing and os.name == 'posix'
|
||
|
|
||
|
|
||
|
class SerialTasks:
|
||
|
"""Has the same interface as ParallelTasks, but executes tasks directly."""
|
||
|
|
||
|
def __init__(self, nproc: int = 1) -> None:
|
||
|
pass
|
||
|
|
||
|
def add_task(
|
||
|
self, task_func: Callable, arg: Any = None, result_func: Callable | None = None,
|
||
|
) -> None:
|
||
|
if arg is not None:
|
||
|
res = task_func(arg)
|
||
|
else:
|
||
|
res = task_func()
|
||
|
if result_func:
|
||
|
result_func(res)
|
||
|
|
||
|
def join(self) -> None:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class ParallelTasks:
|
||
|
"""Executes *nproc* tasks in parallel after forking."""
|
||
|
|
||
|
def __init__(self, nproc: int) -> None:
|
||
|
self.nproc = nproc
|
||
|
# (optional) function performed by each task on the result of main task
|
||
|
self._result_funcs: dict[int, Callable] = {}
|
||
|
# task arguments
|
||
|
self._args: dict[int, list[Any] | None] = {}
|
||
|
# list of subprocesses (both started and waiting)
|
||
|
self._procs: dict[int, Any] = {}
|
||
|
# list of receiving pipe connections of running subprocesses
|
||
|
self._precvs: dict[int, Any] = {}
|
||
|
# list of receiving pipe connections of waiting subprocesses
|
||
|
self._precvsWaiting: dict[int, Any] = {}
|
||
|
# number of working subprocesses
|
||
|
self._pworking = 0
|
||
|
# task number of each subprocess
|
||
|
self._taskid = 0
|
||
|
|
||
|
def _process(self, pipe: Any, func: Callable, arg: Any) -> None:
|
||
|
try:
|
||
|
collector = logging.LogCollector()
|
||
|
with collector.collect():
|
||
|
if arg is None:
|
||
|
ret = func()
|
||
|
else:
|
||
|
ret = func(arg)
|
||
|
failed = False
|
||
|
except BaseException as err:
|
||
|
failed = True
|
||
|
errmsg = traceback.format_exception_only(err.__class__, err)[0].strip()
|
||
|
ret = (errmsg, traceback.format_exc())
|
||
|
logging.convert_serializable(collector.logs)
|
||
|
pipe.send((failed, collector.logs, ret))
|
||
|
|
||
|
def add_task(
|
||
|
self, task_func: Callable, arg: Any = None, result_func: Callable | None = None,
|
||
|
) -> None:
|
||
|
tid = self._taskid
|
||
|
self._taskid += 1
|
||
|
self._result_funcs[tid] = result_func or (lambda arg, result: None)
|
||
|
self._args[tid] = arg
|
||
|
precv, psend = multiprocessing.Pipe(False)
|
||
|
context: Any = multiprocessing.get_context('fork')
|
||
|
proc = context.Process(target=self._process, args=(psend, task_func, arg))
|
||
|
self._procs[tid] = proc
|
||
|
self._precvsWaiting[tid] = precv
|
||
|
self._join_one()
|
||
|
|
||
|
def join(self) -> None:
|
||
|
try:
|
||
|
while self._pworking:
|
||
|
if not self._join_one():
|
||
|
time.sleep(0.02)
|
||
|
finally:
|
||
|
# shutdown other child processes on failure
|
||
|
self.terminate()
|
||
|
|
||
|
def terminate(self) -> None:
|
||
|
for tid in list(self._precvs):
|
||
|
self._procs[tid].terminate()
|
||
|
self._result_funcs.pop(tid)
|
||
|
self._procs.pop(tid)
|
||
|
self._precvs.pop(tid)
|
||
|
self._pworking -= 1
|
||
|
|
||
|
def _join_one(self) -> bool:
|
||
|
joined_any = False
|
||
|
for tid, pipe in self._precvs.items():
|
||
|
if pipe.poll():
|
||
|
exc, logs, result = pipe.recv()
|
||
|
if exc:
|
||
|
raise SphinxParallelError(*result)
|
||
|
for log in logs:
|
||
|
logger.handle(log)
|
||
|
self._result_funcs.pop(tid)(self._args.pop(tid), result)
|
||
|
self._procs[tid].join()
|
||
|
self._precvs.pop(tid)
|
||
|
self._pworking -= 1
|
||
|
joined_any = True
|
||
|
break
|
||
|
|
||
|
while self._precvsWaiting and self._pworking < self.nproc:
|
||
|
newtid, newprecv = self._precvsWaiting.popitem()
|
||
|
self._precvs[newtid] = newprecv
|
||
|
self._procs[newtid].start()
|
||
|
self._pworking += 1
|
||
|
|
||
|
return joined_any
|
||
|
|
||
|
|
||
|
def make_chunks(arguments: Sequence[str], nproc: int, maxbatch: int = 10) -> list[Any]:
|
||
|
# determine how many documents to read in one go
|
||
|
nargs = len(arguments)
|
||
|
chunksize = nargs // nproc
|
||
|
if chunksize >= maxbatch:
|
||
|
# try to improve batch size vs. number of batches
|
||
|
chunksize = int(sqrt(nargs / nproc * maxbatch))
|
||
|
if chunksize == 0:
|
||
|
chunksize = 1
|
||
|
nchunks, rest = divmod(nargs, chunksize)
|
||
|
if rest:
|
||
|
nchunks += 1
|
||
|
# partition documents in "chunks" that will be written by one Process
|
||
|
return [arguments[i * chunksize:(i + 1) * chunksize] for i in range(nchunks)]
|