793 lines
21 KiB
Python
793 lines
21 KiB
Python
|
"""Imported from the recipes section of the itertools documentation.
|
||
|
|
||
|
All functions taken from the recipes section of the itertools library docs
|
||
|
[1]_.
|
||
|
Some backward-compatible usability improvements have been made.
|
||
|
|
||
|
.. [1] http://docs.python.org/library/itertools.html#recipes
|
||
|
|
||
|
"""
|
||
|
import operator
|
||
|
import warnings
|
||
|
|
||
|
from collections import deque
|
||
|
from collections.abc import Sized
|
||
|
from itertools import (
|
||
|
chain,
|
||
|
combinations,
|
||
|
count,
|
||
|
cycle,
|
||
|
groupby,
|
||
|
islice,
|
||
|
repeat,
|
||
|
starmap,
|
||
|
tee,
|
||
|
zip_longest,
|
||
|
)
|
||
|
from random import randrange, sample, choice
|
||
|
|
||
|
__all__ = [
|
||
|
'all_equal',
|
||
|
'before_and_after',
|
||
|
'consume',
|
||
|
'convolve',
|
||
|
'dotproduct',
|
||
|
'first_true',
|
||
|
'flatten',
|
||
|
'grouper',
|
||
|
'iter_except',
|
||
|
'ncycles',
|
||
|
'nth',
|
||
|
'nth_combination',
|
||
|
'padnone',
|
||
|
'pad_none',
|
||
|
'pairwise',
|
||
|
'partition',
|
||
|
'powerset',
|
||
|
'prepend',
|
||
|
'quantify',
|
||
|
'random_combination_with_replacement',
|
||
|
'random_combination',
|
||
|
'random_permutation',
|
||
|
'random_product',
|
||
|
'repeatfunc',
|
||
|
'roundrobin',
|
||
|
'sliding_window',
|
||
|
'subslices',
|
||
|
'tabulate',
|
||
|
'tail',
|
||
|
'take',
|
||
|
'triplewise',
|
||
|
'unique_everseen',
|
||
|
'unique_justseen',
|
||
|
]
|
||
|
|
||
|
_marker = object()
|
||
|
|
||
|
|
||
|
def take(n, iterable):
|
||
|
"""Return first *n* items of the iterable as a list.
|
||
|
|
||
|
>>> take(3, range(10))
|
||
|
[0, 1, 2]
|
||
|
|
||
|
If there are fewer than *n* items in the iterable, all of them are
|
||
|
returned.
|
||
|
|
||
|
>>> take(10, range(3))
|
||
|
[0, 1, 2]
|
||
|
|
||
|
"""
|
||
|
return list(islice(iterable, n))
|
||
|
|
||
|
|
||
|
def tabulate(function, start=0):
|
||
|
"""Return an iterator over the results of ``func(start)``,
|
||
|
``func(start + 1)``, ``func(start + 2)``...
|
||
|
|
||
|
*func* should be a function that accepts one integer argument.
|
||
|
|
||
|
If *start* is not specified it defaults to 0. It will be incremented each
|
||
|
time the iterator is advanced.
|
||
|
|
||
|
>>> square = lambda x: x ** 2
|
||
|
>>> iterator = tabulate(square, -3)
|
||
|
>>> take(4, iterator)
|
||
|
[9, 4, 1, 0]
|
||
|
|
||
|
"""
|
||
|
return map(function, count(start))
|
||
|
|
||
|
|
||
|
def tail(n, iterable):
|
||
|
"""Return an iterator over the last *n* items of *iterable*.
|
||
|
|
||
|
>>> t = tail(3, 'ABCDEFG')
|
||
|
>>> list(t)
|
||
|
['E', 'F', 'G']
|
||
|
|
||
|
"""
|
||
|
# If the given iterable has a length, then we can use islice to get its
|
||
|
# final elements. Note that if the iterable is not actually Iterable,
|
||
|
# either islice or deque will throw a TypeError. This is why we don't
|
||
|
# check if it is Iterable.
|
||
|
if isinstance(iterable, Sized):
|
||
|
yield from islice(iterable, max(0, len(iterable) - n), None)
|
||
|
else:
|
||
|
yield from iter(deque(iterable, maxlen=n))
|
||
|
|
||
|
|
||
|
def consume(iterator, n=None):
|
||
|
"""Advance *iterable* by *n* steps. If *n* is ``None``, consume it
|
||
|
entirely.
|
||
|
|
||
|
Efficiently exhausts an iterator without returning values. Defaults to
|
||
|
consuming the whole iterator, but an optional second argument may be
|
||
|
provided to limit consumption.
|
||
|
|
||
|
>>> i = (x for x in range(10))
|
||
|
>>> next(i)
|
||
|
0
|
||
|
>>> consume(i, 3)
|
||
|
>>> next(i)
|
||
|
4
|
||
|
>>> consume(i)
|
||
|
>>> next(i)
|
||
|
Traceback (most recent call last):
|
||
|
File "<stdin>", line 1, in <module>
|
||
|
StopIteration
|
||
|
|
||
|
If the iterator has fewer items remaining than the provided limit, the
|
||
|
whole iterator will be consumed.
|
||
|
|
||
|
>>> i = (x for x in range(3))
|
||
|
>>> consume(i, 5)
|
||
|
>>> next(i)
|
||
|
Traceback (most recent call last):
|
||
|
File "<stdin>", line 1, in <module>
|
||
|
StopIteration
|
||
|
|
||
|
"""
|
||
|
# Use functions that consume iterators at C speed.
|
||
|
if n is None:
|
||
|
# feed the entire iterator into a zero-length deque
|
||
|
deque(iterator, maxlen=0)
|
||
|
else:
|
||
|
# advance to the empty slice starting at position n
|
||
|
next(islice(iterator, n, n), None)
|
||
|
|
||
|
|
||
|
def nth(iterable, n, default=None):
|
||
|
"""Returns the nth item or a default value.
|
||
|
|
||
|
>>> l = range(10)
|
||
|
>>> nth(l, 3)
|
||
|
3
|
||
|
>>> nth(l, 20, "zebra")
|
||
|
'zebra'
|
||
|
|
||
|
"""
|
||
|
return next(islice(iterable, n, None), default)
|
||
|
|
||
|
|
||
|
def all_equal(iterable):
|
||
|
"""
|
||
|
Returns ``True`` if all the elements are equal to each other.
|
||
|
|
||
|
>>> all_equal('aaaa')
|
||
|
True
|
||
|
>>> all_equal('aaab')
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
g = groupby(iterable)
|
||
|
return next(g, True) and not next(g, False)
|
||
|
|
||
|
|
||
|
def quantify(iterable, pred=bool):
|
||
|
"""Return the how many times the predicate is true.
|
||
|
|
||
|
>>> quantify([True, False, True])
|
||
|
2
|
||
|
|
||
|
"""
|
||
|
return sum(map(pred, iterable))
|
||
|
|
||
|
|
||
|
def pad_none(iterable):
|
||
|
"""Returns the sequence of elements and then returns ``None`` indefinitely.
|
||
|
|
||
|
>>> take(5, pad_none(range(3)))
|
||
|
[0, 1, 2, None, None]
|
||
|
|
||
|
Useful for emulating the behavior of the built-in :func:`map` function.
|
||
|
|
||
|
See also :func:`padded`.
|
||
|
|
||
|
"""
|
||
|
return chain(iterable, repeat(None))
|
||
|
|
||
|
|
||
|
padnone = pad_none
|
||
|
|
||
|
|
||
|
def ncycles(iterable, n):
|
||
|
"""Returns the sequence elements *n* times
|
||
|
|
||
|
>>> list(ncycles(["a", "b"], 3))
|
||
|
['a', 'b', 'a', 'b', 'a', 'b']
|
||
|
|
||
|
"""
|
||
|
return chain.from_iterable(repeat(tuple(iterable), n))
|
||
|
|
||
|
|
||
|
def dotproduct(vec1, vec2):
|
||
|
"""Returns the dot product of the two iterables.
|
||
|
|
||
|
>>> dotproduct([10, 10], [20, 20])
|
||
|
400
|
||
|
|
||
|
"""
|
||
|
return sum(map(operator.mul, vec1, vec2))
|
||
|
|
||
|
|
||
|
def flatten(listOfLists):
|
||
|
"""Return an iterator flattening one level of nesting in a list of lists.
|
||
|
|
||
|
>>> list(flatten([[0, 1], [2, 3]]))
|
||
|
[0, 1, 2, 3]
|
||
|
|
||
|
See also :func:`collapse`, which can flatten multiple levels of nesting.
|
||
|
|
||
|
"""
|
||
|
return chain.from_iterable(listOfLists)
|
||
|
|
||
|
|
||
|
def repeatfunc(func, times=None, *args):
|
||
|
"""Call *func* with *args* repeatedly, returning an iterable over the
|
||
|
results.
|
||
|
|
||
|
If *times* is specified, the iterable will terminate after that many
|
||
|
repetitions:
|
||
|
|
||
|
>>> from operator import add
|
||
|
>>> times = 4
|
||
|
>>> args = 3, 5
|
||
|
>>> list(repeatfunc(add, times, *args))
|
||
|
[8, 8, 8, 8]
|
||
|
|
||
|
If *times* is ``None`` the iterable will not terminate:
|
||
|
|
||
|
>>> from random import randrange
|
||
|
>>> times = None
|
||
|
>>> args = 1, 11
|
||
|
>>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP
|
||
|
[2, 4, 8, 1, 8, 4]
|
||
|
|
||
|
"""
|
||
|
if times is None:
|
||
|
return starmap(func, repeat(args))
|
||
|
return starmap(func, repeat(args, times))
|
||
|
|
||
|
|
||
|
def _pairwise(iterable):
|
||
|
"""Returns an iterator of paired items, overlapping, from the original
|
||
|
|
||
|
>>> take(4, pairwise(count()))
|
||
|
[(0, 1), (1, 2), (2, 3), (3, 4)]
|
||
|
|
||
|
On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.
|
||
|
|
||
|
"""
|
||
|
a, b = tee(iterable)
|
||
|
next(b, None)
|
||
|
yield from zip(a, b)
|
||
|
|
||
|
|
||
|
try:
|
||
|
from itertools import pairwise as itertools_pairwise
|
||
|
except ImportError:
|
||
|
pairwise = _pairwise
|
||
|
else:
|
||
|
|
||
|
def pairwise(iterable):
|
||
|
yield from itertools_pairwise(iterable)
|
||
|
|
||
|
pairwise.__doc__ = _pairwise.__doc__
|
||
|
|
||
|
|
||
|
class UnequalIterablesError(ValueError):
|
||
|
def __init__(self, details=None):
|
||
|
msg = 'Iterables have different lengths'
|
||
|
if details is not None:
|
||
|
msg += (': index 0 has length {}; index {} has length {}').format(
|
||
|
*details
|
||
|
)
|
||
|
|
||
|
super().__init__(msg)
|
||
|
|
||
|
|
||
|
def _zip_equal_generator(iterables):
|
||
|
for combo in zip_longest(*iterables, fillvalue=_marker):
|
||
|
for val in combo:
|
||
|
if val is _marker:
|
||
|
raise UnequalIterablesError()
|
||
|
yield combo
|
||
|
|
||
|
|
||
|
def _zip_equal(*iterables):
|
||
|
# Check whether the iterables are all the same size.
|
||
|
try:
|
||
|
first_size = len(iterables[0])
|
||
|
for i, it in enumerate(iterables[1:], 1):
|
||
|
size = len(it)
|
||
|
if size != first_size:
|
||
|
break
|
||
|
else:
|
||
|
# If we didn't break out, we can use the built-in zip.
|
||
|
return zip(*iterables)
|
||
|
|
||
|
# If we did break out, there was a mismatch.
|
||
|
raise UnequalIterablesError(details=(first_size, i, size))
|
||
|
# If any one of the iterables didn't have a length, start reading
|
||
|
# them until one runs out.
|
||
|
except TypeError:
|
||
|
return _zip_equal_generator(iterables)
|
||
|
|
||
|
|
||
|
def grouper(iterable, n, incomplete='fill', fillvalue=None):
|
||
|
"""Group elements from *iterable* into fixed-length groups of length *n*.
|
||
|
|
||
|
>>> list(grouper('ABCDEF', 3))
|
||
|
[('A', 'B', 'C'), ('D', 'E', 'F')]
|
||
|
|
||
|
The keyword arguments *incomplete* and *fillvalue* control what happens for
|
||
|
iterables whose length is not a multiple of *n*.
|
||
|
|
||
|
When *incomplete* is `'fill'`, the last group will contain instances of
|
||
|
*fillvalue*.
|
||
|
|
||
|
>>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
|
||
|
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
|
||
|
|
||
|
When *incomplete* is `'ignore'`, the last group will not be emitted.
|
||
|
|
||
|
>>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
|
||
|
[('A', 'B', 'C'), ('D', 'E', 'F')]
|
||
|
|
||
|
When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.
|
||
|
|
||
|
>>> it = grouper('ABCDEFG', 3, incomplete='strict')
|
||
|
>>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
UnequalIterablesError
|
||
|
|
||
|
"""
|
||
|
if isinstance(iterable, int):
|
||
|
warnings.warn(
|
||
|
"grouper expects iterable as first parameter", DeprecationWarning
|
||
|
)
|
||
|
n, iterable = iterable, n
|
||
|
args = [iter(iterable)] * n
|
||
|
if incomplete == 'fill':
|
||
|
return zip_longest(*args, fillvalue=fillvalue)
|
||
|
if incomplete == 'strict':
|
||
|
return _zip_equal(*args)
|
||
|
if incomplete == 'ignore':
|
||
|
return zip(*args)
|
||
|
else:
|
||
|
raise ValueError('Expected fill, strict, or ignore')
|
||
|
|
||
|
|
||
|
def roundrobin(*iterables):
|
||
|
"""Yields an item from each iterable, alternating between them.
|
||
|
|
||
|
>>> list(roundrobin('ABC', 'D', 'EF'))
|
||
|
['A', 'D', 'E', 'B', 'F', 'C']
|
||
|
|
||
|
This function produces the same output as :func:`interleave_longest`, but
|
||
|
may perform better for some inputs (in particular when the number of
|
||
|
iterables is small).
|
||
|
|
||
|
"""
|
||
|
# Recipe credited to George Sakkis
|
||
|
pending = len(iterables)
|
||
|
nexts = cycle(iter(it).__next__ for it in iterables)
|
||
|
while pending:
|
||
|
try:
|
||
|
for next in nexts:
|
||
|
yield next()
|
||
|
except StopIteration:
|
||
|
pending -= 1
|
||
|
nexts = cycle(islice(nexts, pending))
|
||
|
|
||
|
|
||
|
def partition(pred, iterable):
|
||
|
"""
|
||
|
Returns a 2-tuple of iterables derived from the input iterable.
|
||
|
The first yields the items that have ``pred(item) == False``.
|
||
|
The second yields the items that have ``pred(item) == True``.
|
||
|
|
||
|
>>> is_odd = lambda x: x % 2 != 0
|
||
|
>>> iterable = range(10)
|
||
|
>>> even_items, odd_items = partition(is_odd, iterable)
|
||
|
>>> list(even_items), list(odd_items)
|
||
|
([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])
|
||
|
|
||
|
If *pred* is None, :func:`bool` is used.
|
||
|
|
||
|
>>> iterable = [0, 1, False, True, '', ' ']
|
||
|
>>> false_items, true_items = partition(None, iterable)
|
||
|
>>> list(false_items), list(true_items)
|
||
|
([0, False, ''], [1, True, ' '])
|
||
|
|
||
|
"""
|
||
|
if pred is None:
|
||
|
pred = bool
|
||
|
|
||
|
evaluations = ((pred(x), x) for x in iterable)
|
||
|
t1, t2 = tee(evaluations)
|
||
|
return (
|
||
|
(x for (cond, x) in t1 if not cond),
|
||
|
(x for (cond, x) in t2 if cond),
|
||
|
)
|
||
|
|
||
|
|
||
|
def powerset(iterable):
|
||
|
"""Yields all possible subsets of the iterable.
|
||
|
|
||
|
>>> list(powerset([1, 2, 3]))
|
||
|
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
|
||
|
|
||
|
:func:`powerset` will operate on iterables that aren't :class:`set`
|
||
|
instances, so repeated elements in the input will produce repeated elements
|
||
|
in the output. Use :func:`unique_everseen` on the input to avoid generating
|
||
|
duplicates:
|
||
|
|
||
|
>>> seq = [1, 1, 0]
|
||
|
>>> list(powerset(seq))
|
||
|
[(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]
|
||
|
>>> from more_itertools import unique_everseen
|
||
|
>>> list(powerset(unique_everseen(seq)))
|
||
|
[(), (1,), (0,), (1, 0)]
|
||
|
|
||
|
"""
|
||
|
s = list(iterable)
|
||
|
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
|
||
|
|
||
|
|
||
|
def unique_everseen(iterable, key=None):
|
||
|
"""
|
||
|
Yield unique elements, preserving order.
|
||
|
|
||
|
>>> list(unique_everseen('AAAABBBCCDAABBB'))
|
||
|
['A', 'B', 'C', 'D']
|
||
|
>>> list(unique_everseen('ABBCcAD', str.lower))
|
||
|
['A', 'B', 'C', 'D']
|
||
|
|
||
|
Sequences with a mix of hashable and unhashable items can be used.
|
||
|
The function will be slower (i.e., `O(n^2)`) for unhashable items.
|
||
|
|
||
|
Remember that ``list`` objects are unhashable - you can use the *key*
|
||
|
parameter to transform the list to a tuple (which is hashable) to
|
||
|
avoid a slowdown.
|
||
|
|
||
|
>>> iterable = ([1, 2], [2, 3], [1, 2])
|
||
|
>>> list(unique_everseen(iterable)) # Slow
|
||
|
[[1, 2], [2, 3]]
|
||
|
>>> list(unique_everseen(iterable, key=tuple)) # Faster
|
||
|
[[1, 2], [2, 3]]
|
||
|
|
||
|
Similary, you may want to convert unhashable ``set`` objects with
|
||
|
``key=frozenset``. For ``dict`` objects,
|
||
|
``key=lambda x: frozenset(x.items())`` can be used.
|
||
|
|
||
|
"""
|
||
|
seenset = set()
|
||
|
seenset_add = seenset.add
|
||
|
seenlist = []
|
||
|
seenlist_add = seenlist.append
|
||
|
use_key = key is not None
|
||
|
|
||
|
for element in iterable:
|
||
|
k = key(element) if use_key else element
|
||
|
try:
|
||
|
if k not in seenset:
|
||
|
seenset_add(k)
|
||
|
yield element
|
||
|
except TypeError:
|
||
|
if k not in seenlist:
|
||
|
seenlist_add(k)
|
||
|
yield element
|
||
|
|
||
|
|
||
|
def unique_justseen(iterable, key=None):
|
||
|
"""Yields elements in order, ignoring serial duplicates
|
||
|
|
||
|
>>> list(unique_justseen('AAAABBBCCDAABBB'))
|
||
|
['A', 'B', 'C', 'D', 'A', 'B']
|
||
|
>>> list(unique_justseen('ABBCcAD', str.lower))
|
||
|
['A', 'B', 'C', 'A', 'D']
|
||
|
|
||
|
"""
|
||
|
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
|
||
|
|
||
|
|
||
|
def iter_except(func, exception, first=None):
|
||
|
"""Yields results from a function repeatedly until an exception is raised.
|
||
|
|
||
|
Converts a call-until-exception interface to an iterator interface.
|
||
|
Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
|
||
|
to end the loop.
|
||
|
|
||
|
>>> l = [0, 1, 2]
|
||
|
>>> list(iter_except(l.pop, IndexError))
|
||
|
[2, 1, 0]
|
||
|
|
||
|
Multiple exceptions can be specified as a stopping condition:
|
||
|
|
||
|
>>> l = [1, 2, 3, '...', 4, 5, 6]
|
||
|
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
||
|
[7, 6, 5]
|
||
|
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
||
|
[4, 3, 2]
|
||
|
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
||
|
[]
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
if first is not None:
|
||
|
yield first()
|
||
|
while 1:
|
||
|
yield func()
|
||
|
except exception:
|
||
|
pass
|
||
|
|
||
|
|
||
|
def first_true(iterable, default=None, pred=None):
|
||
|
"""
|
||
|
Returns the first true value in the iterable.
|
||
|
|
||
|
If no true value is found, returns *default*
|
||
|
|
||
|
If *pred* is not None, returns the first item for which
|
||
|
``pred(item) == True`` .
|
||
|
|
||
|
>>> first_true(range(10))
|
||
|
1
|
||
|
>>> first_true(range(10), pred=lambda x: x > 5)
|
||
|
6
|
||
|
>>> first_true(range(10), default='missing', pred=lambda x: x > 9)
|
||
|
'missing'
|
||
|
|
||
|
"""
|
||
|
return next(filter(pred, iterable), default)
|
||
|
|
||
|
|
||
|
def random_product(*args, repeat=1):
|
||
|
"""Draw an item at random from each of the input iterables.
|
||
|
|
||
|
>>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP
|
||
|
('c', 3, 'Z')
|
||
|
|
||
|
If *repeat* is provided as a keyword argument, that many items will be
|
||
|
drawn from each iterable.
|
||
|
|
||
|
>>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP
|
||
|
('a', 2, 'd', 3)
|
||
|
|
||
|
This equivalent to taking a random selection from
|
||
|
``itertools.product(*args, **kwarg)``.
|
||
|
|
||
|
"""
|
||
|
pools = [tuple(pool) for pool in args] * repeat
|
||
|
return tuple(choice(pool) for pool in pools)
|
||
|
|
||
|
|
||
|
def random_permutation(iterable, r=None):
|
||
|
"""Return a random *r* length permutation of the elements in *iterable*.
|
||
|
|
||
|
If *r* is not specified or is ``None``, then *r* defaults to the length of
|
||
|
*iterable*.
|
||
|
|
||
|
>>> random_permutation(range(5)) # doctest:+SKIP
|
||
|
(3, 4, 0, 1, 2)
|
||
|
|
||
|
This equivalent to taking a random selection from
|
||
|
``itertools.permutations(iterable, r)``.
|
||
|
|
||
|
"""
|
||
|
pool = tuple(iterable)
|
||
|
r = len(pool) if r is None else r
|
||
|
return tuple(sample(pool, r))
|
||
|
|
||
|
|
||
|
def random_combination(iterable, r):
|
||
|
"""Return a random *r* length subsequence of the elements in *iterable*.
|
||
|
|
||
|
>>> random_combination(range(5), 3) # doctest:+SKIP
|
||
|
(2, 3, 4)
|
||
|
|
||
|
This equivalent to taking a random selection from
|
||
|
``itertools.combinations(iterable, r)``.
|
||
|
|
||
|
"""
|
||
|
pool = tuple(iterable)
|
||
|
n = len(pool)
|
||
|
indices = sorted(sample(range(n), r))
|
||
|
return tuple(pool[i] for i in indices)
|
||
|
|
||
|
|
||
|
def random_combination_with_replacement(iterable, r):
|
||
|
"""Return a random *r* length subsequence of elements in *iterable*,
|
||
|
allowing individual elements to be repeated.
|
||
|
|
||
|
>>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
|
||
|
(0, 0, 1, 2, 2)
|
||
|
|
||
|
This equivalent to taking a random selection from
|
||
|
``itertools.combinations_with_replacement(iterable, r)``.
|
||
|
|
||
|
"""
|
||
|
pool = tuple(iterable)
|
||
|
n = len(pool)
|
||
|
indices = sorted(randrange(n) for i in range(r))
|
||
|
return tuple(pool[i] for i in indices)
|
||
|
|
||
|
|
||
|
def nth_combination(iterable, r, index):
|
||
|
"""Equivalent to ``list(combinations(iterable, r))[index]``.
|
||
|
|
||
|
The subsequences of *iterable* that are of length *r* can be ordered
|
||
|
lexicographically. :func:`nth_combination` computes the subsequence at
|
||
|
sort position *index* directly, without computing the previous
|
||
|
subsequences.
|
||
|
|
||
|
>>> nth_combination(range(5), 3, 5)
|
||
|
(0, 3, 4)
|
||
|
|
||
|
``ValueError`` will be raised If *r* is negative or greater than the length
|
||
|
of *iterable*.
|
||
|
``IndexError`` will be raised if the given *index* is invalid.
|
||
|
"""
|
||
|
pool = tuple(iterable)
|
||
|
n = len(pool)
|
||
|
if (r < 0) or (r > n):
|
||
|
raise ValueError
|
||
|
|
||
|
c = 1
|
||
|
k = min(r, n - r)
|
||
|
for i in range(1, k + 1):
|
||
|
c = c * (n - k + i) // i
|
||
|
|
||
|
if index < 0:
|
||
|
index += c
|
||
|
|
||
|
if (index < 0) or (index >= c):
|
||
|
raise IndexError
|
||
|
|
||
|
result = []
|
||
|
while r:
|
||
|
c, n, r = c * r // n, n - 1, r - 1
|
||
|
while index >= c:
|
||
|
index -= c
|
||
|
c, n = c * (n - r) // n, n - 1
|
||
|
result.append(pool[-1 - n])
|
||
|
|
||
|
return tuple(result)
|
||
|
|
||
|
|
||
|
def prepend(value, iterator):
|
||
|
"""Yield *value*, followed by the elements in *iterator*.
|
||
|
|
||
|
>>> value = '0'
|
||
|
>>> iterator = ['1', '2', '3']
|
||
|
>>> list(prepend(value, iterator))
|
||
|
['0', '1', '2', '3']
|
||
|
|
||
|
To prepend multiple values, see :func:`itertools.chain`
|
||
|
or :func:`value_chain`.
|
||
|
|
||
|
"""
|
||
|
return chain([value], iterator)
|
||
|
|
||
|
|
||
|
def convolve(signal, kernel):
|
||
|
"""Convolve the iterable *signal* with the iterable *kernel*.
|
||
|
|
||
|
>>> signal = (1, 2, 3, 4, 5)
|
||
|
>>> kernel = [3, 2, 1]
|
||
|
>>> list(convolve(signal, kernel))
|
||
|
[3, 8, 14, 20, 26, 14, 5]
|
||
|
|
||
|
Note: the input arguments are not interchangeable, as the *kernel*
|
||
|
is immediately consumed and stored.
|
||
|
|
||
|
"""
|
||
|
kernel = tuple(kernel)[::-1]
|
||
|
n = len(kernel)
|
||
|
window = deque([0], maxlen=n) * n
|
||
|
for x in chain(signal, repeat(0, n - 1)):
|
||
|
window.append(x)
|
||
|
yield sum(map(operator.mul, kernel, window))
|
||
|
|
||
|
|
||
|
def before_and_after(predicate, it):
|
||
|
"""A variant of :func:`takewhile` that allows complete access to the
|
||
|
remainder of the iterator.
|
||
|
|
||
|
>>> it = iter('ABCdEfGhI')
|
||
|
>>> all_upper, remainder = before_and_after(str.isupper, it)
|
||
|
>>> ''.join(all_upper)
|
||
|
'ABC'
|
||
|
>>> ''.join(remainder) # takewhile() would lose the 'd'
|
||
|
'dEfGhI'
|
||
|
|
||
|
Note that the first iterator must be fully consumed before the second
|
||
|
iterator can generate valid results.
|
||
|
"""
|
||
|
it = iter(it)
|
||
|
transition = []
|
||
|
|
||
|
def true_iterator():
|
||
|
for elem in it:
|
||
|
if predicate(elem):
|
||
|
yield elem
|
||
|
else:
|
||
|
transition.append(elem)
|
||
|
return
|
||
|
|
||
|
def remainder_iterator():
|
||
|
yield from transition
|
||
|
yield from it
|
||
|
|
||
|
return true_iterator(), remainder_iterator()
|
||
|
|
||
|
|
||
|
def triplewise(iterable):
|
||
|
"""Return overlapping triplets from *iterable*.
|
||
|
|
||
|
>>> list(triplewise('ABCDE'))
|
||
|
[('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]
|
||
|
|
||
|
"""
|
||
|
for (a, _), (b, c) in pairwise(pairwise(iterable)):
|
||
|
yield a, b, c
|
||
|
|
||
|
|
||
|
def sliding_window(iterable, n):
|
||
|
"""Return a sliding window of width *n* over *iterable*.
|
||
|
|
||
|
>>> list(sliding_window(range(6), 4))
|
||
|
[(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]
|
||
|
|
||
|
If *iterable* has fewer than *n* items, then nothing is yielded:
|
||
|
|
||
|
>>> list(sliding_window(range(3), 4))
|
||
|
[]
|
||
|
|
||
|
For a variant with more features, see :func:`windowed`.
|
||
|
"""
|
||
|
it = iter(iterable)
|
||
|
window = deque(islice(it, n), maxlen=n)
|
||
|
if len(window) == n:
|
||
|
yield tuple(window)
|
||
|
for x in it:
|
||
|
window.append(x)
|
||
|
yield tuple(window)
|
||
|
|
||
|
|
||
|
def subslices(iterable):
|
||
|
"""Return all contiguous non-empty subslices of *iterable*.
|
||
|
|
||
|
>>> list(subslices('ABC'))
|
||
|
[['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]
|
||
|
|
||
|
This is similar to :func:`substrings`, but emits items in a different
|
||
|
order.
|
||
|
"""
|
||
|
seq = list(iterable)
|
||
|
slices = starmap(slice, combinations(range(len(seq) + 1), 2))
|
||
|
return map(operator.getitem, repeat(seq), slices)
|