usse/funda-scraper/venv/lib/python3.10/site-packages/geographiclib/geomath.py

163 lines
4.5 KiB
Python
Raw Normal View History

2023-02-20 22:38:24 +00:00
"""geomath.py: transcription of GeographicLib::Math class."""
# geomath.py
#
# This is a rather literal translation of the GeographicLib::Math class to
# python. See the documentation for the C++ class for more information at
#
# https://geographiclib.sourceforge.io/html/annotated.html
#
# Copyright (c) Charles Karney (2011-2021) <charles@karney.com> and
# licensed under the MIT/X11 License. For more information, see
# https://geographiclib.sourceforge.io/
######################################################################
import sys
import math
class Math:
"""
Additional math routines for GeographicLib.
"""
@staticmethod
def sq(x):
"""Square a number"""
return x * x
@staticmethod
def cbrt(x):
"""Real cube root of a number"""
return math.copysign(math.pow(abs(x), 1/3.0), x)
@staticmethod
def norm(x, y):
"""Private: Normalize a two-vector."""
r = (math.sqrt(Math.sq(x) + Math.sq(y))
# hypot is inaccurate for 3.[89]. Problem reported by agdhruv
# https://github.com/geopy/geopy/issues/466 ; see
# https://bugs.python.org/issue43088
# Visual Studio 2015 32-bit has a similar problem.
if (3, 8) <= sys.version_info < (3, 10)
else math.hypot(x, y))
return x/r, y/r
@staticmethod
def sum(u, v):
"""Error free transformation of a sum."""
# Error free transformation of a sum. Note that t can be the same as one
# of the first two arguments.
s = u + v
up = s - v
vpp = s - up
up -= u
vpp -= v
t = s if s == 0 else 0.0 - (up + vpp)
# u + v = s + t
# = round(u + v) + t
return s, t
@staticmethod
def polyval(N, p, s, x):
"""Evaluate a polynomial."""
y = float(0 if N < 0 else p[s]) # make sure the returned value is a float
while N > 0:
N -= 1; s += 1
y = y * x + p[s]
return y
@staticmethod
def AngRound(x):
"""Private: Round an angle so that small values underflow to zero."""
# The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57
# for reals = 0.7 pm on the earth if x is an angle in degrees. (This
# is about 1000 times more resolution than we get with angles around 90
# degrees.) We use this to avoid having to deal with near singular
# cases when x is non-zero but tiny (e.g., 1.0e-200).
z = 1/16.0
y = abs(x)
# The compiler mustn't "simplify" z - (z - y) to y
if y < z: y = z - (z - y)
return math.copysign(y, x)
@staticmethod
def remainder(x, y):
"""remainder of x/y in the range [-y/2, y/2]."""
return math.remainder(x, y) if math.isfinite(x) else math.nan
@staticmethod
def AngNormalize(x):
"""reduce angle to [-180,180]"""
y = Math.remainder(x, 360)
return math.copysign(180.0, x) if abs(y) == 180 else y
@staticmethod
def LatFix(x):
"""replace angles outside [-90,90] by NaN"""
return math.nan if abs(x) > 90 else x
@staticmethod
def AngDiff(x, y):
"""compute y - x and reduce to [-180,180] accurately"""
d, t = Math.sum(Math.remainder(-x, 360), Math.remainder(y, 360))
d, t = Math.sum(Math.remainder(d, 360), t)
if d == 0 or abs(d) == 180:
d = math.copysign(d, y - x if t == 0 else -t)
return d, t
@staticmethod
def sincosd(x):
"""Compute sine and cosine of x in degrees."""
r = math.fmod(x, 360) if math.isfinite(x) else math.nan
q = 0 if math.isnan(r) else int(round(r / 90))
r -= 90 * q; r = math.radians(r)
s = math.sin(r); c = math.cos(r)
q = q % 4
if q == 1: s, c = c, -s
elif q == 2: s, c = -s, -c
elif q == 3: s, c = -c, s
c = c + 0.0
if s == 0: s = math.copysign(s, x)
return s, c
@staticmethod
def sincosde(x, t):
"""Compute sine and cosine of (x + t) in degrees with x in [-180, 180]"""
q = int(round(x / 90)) if math.isfinite(x) else 0
r = x - 90 * q; r = math.radians(Math.AngRound(r + t))
s = math.sin(r); c = math.cos(r)
q = q % 4
if q == 1: s, c = c, -s
elif q == 2: s, c = -s, -c
elif q == 3: s, c = -c, s
c = c + 0.0
if s == 0: s = math.copysign(s, x)
return s, c
@staticmethod
def atan2d(y, x):
"""compute atan2(y, x) with the result in degrees"""
if abs(y) > abs(x):
q = 2; x, y = y, x
else:
q = 0
if x < 0:
q += 1; x = -x
ang = math.degrees(math.atan2(y, x))
if q == 1: ang = math.copysign(180, y) - ang
elif q == 2: ang = 90 - ang
elif q == 3: ang = -90 + ang
return ang