Shofel2_T124_python/venv/lib/python3.10/site-packages/antlr4/atn/ATNDeserializer.py

529 lines
22 KiB
Python

# Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
# Use of this file is governed by the BSD 3-clause license that
# can be found in the LICENSE.txt file in the project root.
#/
from uuid import UUID
from io import StringIO
from typing import Callable
from antlr4.Token import Token
from antlr4.atn.ATN import ATN
from antlr4.atn.ATNType import ATNType
from antlr4.atn.ATNState import *
from antlr4.atn.Transition import *
from antlr4.atn.LexerAction import *
from antlr4.atn.ATNDeserializationOptions import ATNDeserializationOptions
# This is the earliest supported serialized UUID.
BASE_SERIALIZED_UUID = UUID("AADB8D7E-AEEF-4415-AD2B-8204D6CF042E")
# This UUID indicates the serialized ATN contains two sets of
# IntervalSets, where the second set's values are encoded as
# 32-bit integers to support the full Unicode SMP range up to U+10FFFF.
ADDED_UNICODE_SMP = UUID("59627784-3BE5-417A-B9EB-8131A7286089")
# This list contains all of the currently supported UUIDs, ordered by when
# the feature first appeared in this branch.
SUPPORTED_UUIDS = [ BASE_SERIALIZED_UUID, ADDED_UNICODE_SMP ]
SERIALIZED_VERSION = 3
# This is the current serialized UUID.
SERIALIZED_UUID = ADDED_UNICODE_SMP
class ATNDeserializer (object):
def __init__(self, options : ATNDeserializationOptions = None):
if options is None:
options = ATNDeserializationOptions.defaultOptions
self.deserializationOptions = options
# Determines if a particular serialized representation of an ATN supports
# a particular feature, identified by the {@link UUID} used for serializing
# the ATN at the time the feature was first introduced.
#
# @param feature The {@link UUID} marking the first time the feature was
# supported in the serialized ATN.
# @param actualUuid The {@link UUID} of the actual serialized ATN which is
# currently being deserialized.
# @return {@code true} if the {@code actualUuid} value represents a
# serialized ATN at or after the feature identified by {@code feature} was
# introduced; otherwise, {@code false}.
def isFeatureSupported(self, feature : UUID , actualUuid : UUID ):
idx1 = SUPPORTED_UUIDS.index(feature)
if idx1<0:
return False
idx2 = SUPPORTED_UUIDS.index(actualUuid)
return idx2 >= idx1
def deserialize(self, data : str):
self.reset(data)
self.checkVersion()
self.checkUUID()
atn = self.readATN()
self.readStates(atn)
self.readRules(atn)
self.readModes(atn)
sets = []
# First, read all sets with 16-bit Unicode code points <= U+FFFF.
self.readSets(atn, sets, self.readInt)
# Next, if the ATN was serialized with the Unicode SMP feature,
# deserialize sets with 32-bit arguments <= U+10FFFF.
if self.isFeatureSupported(ADDED_UNICODE_SMP, self.uuid):
self.readSets(atn, sets, self.readInt32)
self.readEdges(atn, sets)
self.readDecisions(atn)
self.readLexerActions(atn)
self.markPrecedenceDecisions(atn)
self.verifyATN(atn)
if self.deserializationOptions.generateRuleBypassTransitions \
and atn.grammarType == ATNType.PARSER:
self.generateRuleBypassTransitions(atn)
# re-verify after modification
self.verifyATN(atn)
return atn
def reset(self, data:str):
def adjust(c):
v = ord(c)
return v-2 if v>1 else v + 65533
temp = [ adjust(c) for c in data ]
# don't adjust the first value since that's the version number
temp[0] = ord(data[0])
self.data = temp
self.pos = 0
def checkVersion(self):
version = self.readInt()
if version != SERIALIZED_VERSION:
raise Exception("Could not deserialize ATN with version " + str(version) + " (expected " + str(SERIALIZED_VERSION) + ").")
def checkUUID(self):
uuid = self.readUUID()
if not uuid in SUPPORTED_UUIDS:
raise Exception("Could not deserialize ATN with UUID: " + str(uuid) + \
" (expected " + str(SERIALIZED_UUID) + " or a legacy UUID).", uuid, SERIALIZED_UUID)
self.uuid = uuid
def readATN(self):
idx = self.readInt()
grammarType = ATNType.fromOrdinal(idx)
maxTokenType = self.readInt()
return ATN(grammarType, maxTokenType)
def readStates(self, atn:ATN):
loopBackStateNumbers = []
endStateNumbers = []
nstates = self.readInt()
for i in range(0, nstates):
stype = self.readInt()
# ignore bad type of states
if stype==ATNState.INVALID_TYPE:
atn.addState(None)
continue
ruleIndex = self.readInt()
if ruleIndex == 0xFFFF:
ruleIndex = -1
s = self.stateFactory(stype, ruleIndex)
if stype == ATNState.LOOP_END: # special case
loopBackStateNumber = self.readInt()
loopBackStateNumbers.append((s, loopBackStateNumber))
elif isinstance(s, BlockStartState):
endStateNumber = self.readInt()
endStateNumbers.append((s, endStateNumber))
atn.addState(s)
# delay the assignment of loop back and end states until we know all the state instances have been initialized
for pair in loopBackStateNumbers:
pair[0].loopBackState = atn.states[pair[1]]
for pair in endStateNumbers:
pair[0].endState = atn.states[pair[1]]
numNonGreedyStates = self.readInt()
for i in range(0, numNonGreedyStates):
stateNumber = self.readInt()
atn.states[stateNumber].nonGreedy = True
numPrecedenceStates = self.readInt()
for i in range(0, numPrecedenceStates):
stateNumber = self.readInt()
atn.states[stateNumber].isPrecedenceRule = True
def readRules(self, atn:ATN):
nrules = self.readInt()
if atn.grammarType == ATNType.LEXER:
atn.ruleToTokenType = [0] * nrules
atn.ruleToStartState = [0] * nrules
for i in range(0, nrules):
s = self.readInt()
startState = atn.states[s]
atn.ruleToStartState[i] = startState
if atn.grammarType == ATNType.LEXER:
tokenType = self.readInt()
if tokenType == 0xFFFF:
tokenType = Token.EOF
atn.ruleToTokenType[i] = tokenType
atn.ruleToStopState = [0] * nrules
for state in atn.states:
if not isinstance(state, RuleStopState):
continue
atn.ruleToStopState[state.ruleIndex] = state
atn.ruleToStartState[state.ruleIndex].stopState = state
def readModes(self, atn:ATN):
nmodes = self.readInt()
for i in range(0, nmodes):
s = self.readInt()
atn.modeToStartState.append(atn.states[s])
def readSets(self, atn:ATN, sets:list, readUnicode:Callable[[], int]):
m = self.readInt()
for i in range(0, m):
iset = IntervalSet()
sets.append(iset)
n = self.readInt()
containsEof = self.readInt()
if containsEof!=0:
iset.addOne(-1)
for j in range(0, n):
i1 = readUnicode()
i2 = readUnicode()
iset.addRange(range(i1, i2 + 1)) # range upper limit is exclusive
def readEdges(self, atn:ATN, sets:list):
nedges = self.readInt()
for i in range(0, nedges):
src = self.readInt()
trg = self.readInt()
ttype = self.readInt()
arg1 = self.readInt()
arg2 = self.readInt()
arg3 = self.readInt()
trans = self.edgeFactory(atn, ttype, src, trg, arg1, arg2, arg3, sets)
srcState = atn.states[src]
srcState.addTransition(trans)
# edges for rule stop states can be derived, so they aren't serialized
for state in atn.states:
for i in range(0, len(state.transitions)):
t = state.transitions[i]
if not isinstance(t, RuleTransition):
continue
outermostPrecedenceReturn = -1
if atn.ruleToStartState[t.target.ruleIndex].isPrecedenceRule:
if t.precedence == 0:
outermostPrecedenceReturn = t.target.ruleIndex
trans = EpsilonTransition(t.followState, outermostPrecedenceReturn)
atn.ruleToStopState[t.target.ruleIndex].addTransition(trans)
for state in atn.states:
if isinstance(state, BlockStartState):
# we need to know the end state to set its start state
if state.endState is None:
raise Exception("IllegalState")
# block end states can only be associated to a single block start state
if state.endState.startState is not None:
raise Exception("IllegalState")
state.endState.startState = state
if isinstance(state, PlusLoopbackState):
for i in range(0, len(state.transitions)):
target = state.transitions[i].target
if isinstance(target, PlusBlockStartState):
target.loopBackState = state
elif isinstance(state, StarLoopbackState):
for i in range(0, len(state.transitions)):
target = state.transitions[i].target
if isinstance(target, StarLoopEntryState):
target.loopBackState = state
def readDecisions(self, atn:ATN):
ndecisions = self.readInt()
for i in range(0, ndecisions):
s = self.readInt()
decState = atn.states[s]
atn.decisionToState.append(decState)
decState.decision = i
def readLexerActions(self, atn:ATN):
if atn.grammarType == ATNType.LEXER:
count = self.readInt()
atn.lexerActions = [ None ] * count
for i in range(0, count):
actionType = self.readInt()
data1 = self.readInt()
if data1 == 0xFFFF:
data1 = -1
data2 = self.readInt()
if data2 == 0xFFFF:
data2 = -1
lexerAction = self.lexerActionFactory(actionType, data1, data2)
atn.lexerActions[i] = lexerAction
def generateRuleBypassTransitions(self, atn:ATN):
count = len(atn.ruleToStartState)
atn.ruleToTokenType = [ 0 ] * count
for i in range(0, count):
atn.ruleToTokenType[i] = atn.maxTokenType + i + 1
for i in range(0, count):
self.generateRuleBypassTransition(atn, i)
def generateRuleBypassTransition(self, atn:ATN, idx:int):
bypassStart = BasicBlockStartState()
bypassStart.ruleIndex = idx
atn.addState(bypassStart)
bypassStop = BlockEndState()
bypassStop.ruleIndex = idx
atn.addState(bypassStop)
bypassStart.endState = bypassStop
atn.defineDecisionState(bypassStart)
bypassStop.startState = bypassStart
excludeTransition = None
if atn.ruleToStartState[idx].isPrecedenceRule:
# wrap from the beginning of the rule to the StarLoopEntryState
endState = None
for state in atn.states:
if self.stateIsEndStateFor(state, idx):
endState = state
excludeTransition = state.loopBackState.transitions[0]
break
if excludeTransition is None:
raise Exception("Couldn't identify final state of the precedence rule prefix section.")
else:
endState = atn.ruleToStopState[idx]
# all non-excluded transitions that currently target end state need to target blockEnd instead
for state in atn.states:
for transition in state.transitions:
if transition == excludeTransition:
continue
if transition.target == endState:
transition.target = bypassStop
# all transitions leaving the rule start state need to leave blockStart instead
ruleToStartState = atn.ruleToStartState[idx]
count = len(ruleToStartState.transitions)
while count > 0:
bypassStart.addTransition(ruleToStartState.transitions[count-1])
del ruleToStartState.transitions[-1]
# link the new states
atn.ruleToStartState[idx].addTransition(EpsilonTransition(bypassStart))
bypassStop.addTransition(EpsilonTransition(endState))
matchState = BasicState()
atn.addState(matchState)
matchState.addTransition(AtomTransition(bypassStop, atn.ruleToTokenType[idx]))
bypassStart.addTransition(EpsilonTransition(matchState))
def stateIsEndStateFor(self, state:ATNState, idx:int):
if state.ruleIndex != idx:
return None
if not isinstance(state, StarLoopEntryState):
return None
maybeLoopEndState = state.transitions[len(state.transitions) - 1].target
if not isinstance(maybeLoopEndState, LoopEndState):
return None
if maybeLoopEndState.epsilonOnlyTransitions and \
isinstance(maybeLoopEndState.transitions[0].target, RuleStopState):
return state
else:
return None
#
# Analyze the {@link StarLoopEntryState} states in the specified ATN to set
# the {@link StarLoopEntryState#isPrecedenceDecision} field to the
# correct value.
#
# @param atn The ATN.
#
def markPrecedenceDecisions(self, atn:ATN):
for state in atn.states:
if not isinstance(state, StarLoopEntryState):
continue
# We analyze the ATN to determine if this ATN decision state is the
# decision for the closure block that determines whether a
# precedence rule should continue or complete.
#
if atn.ruleToStartState[state.ruleIndex].isPrecedenceRule:
maybeLoopEndState = state.transitions[len(state.transitions) - 1].target
if isinstance(maybeLoopEndState, LoopEndState):
if maybeLoopEndState.epsilonOnlyTransitions and \
isinstance(maybeLoopEndState.transitions[0].target, RuleStopState):
state.isPrecedenceDecision = True
def verifyATN(self, atn:ATN):
if not self.deserializationOptions.verifyATN:
return
# verify assumptions
for state in atn.states:
if state is None:
continue
self.checkCondition(state.epsilonOnlyTransitions or len(state.transitions) <= 1)
if isinstance(state, PlusBlockStartState):
self.checkCondition(state.loopBackState is not None)
if isinstance(state, StarLoopEntryState):
self.checkCondition(state.loopBackState is not None)
self.checkCondition(len(state.transitions) == 2)
if isinstance(state.transitions[0].target, StarBlockStartState):
self.checkCondition(isinstance(state.transitions[1].target, LoopEndState))
self.checkCondition(not state.nonGreedy)
elif isinstance(state.transitions[0].target, LoopEndState):
self.checkCondition(isinstance(state.transitions[1].target, StarBlockStartState))
self.checkCondition(state.nonGreedy)
else:
raise Exception("IllegalState")
if isinstance(state, StarLoopbackState):
self.checkCondition(len(state.transitions) == 1)
self.checkCondition(isinstance(state.transitions[0].target, StarLoopEntryState))
if isinstance(state, LoopEndState):
self.checkCondition(state.loopBackState is not None)
if isinstance(state, RuleStartState):
self.checkCondition(state.stopState is not None)
if isinstance(state, BlockStartState):
self.checkCondition(state.endState is not None)
if isinstance(state, BlockEndState):
self.checkCondition(state.startState is not None)
if isinstance(state, DecisionState):
self.checkCondition(len(state.transitions) <= 1 or state.decision >= 0)
else:
self.checkCondition(len(state.transitions) <= 1 or isinstance(state, RuleStopState))
def checkCondition(self, condition:bool, message=None):
if not condition:
if message is None:
message = "IllegalState"
raise Exception(message)
def readInt(self):
i = self.data[self.pos]
self.pos += 1
return i
def readInt32(self):
low = self.readInt()
high = self.readInt()
return low | (high << 16)
def readLong(self):
low = self.readInt32()
high = self.readInt32()
return (low & 0x00000000FFFFFFFF) | (high << 32)
def readUUID(self):
low = self.readLong()
high = self.readLong()
allBits = (low & 0xFFFFFFFFFFFFFFFF) | (high << 64)
return UUID(int=allBits)
edgeFactories = [ lambda args : None,
lambda atn, src, trg, arg1, arg2, arg3, sets, target : EpsilonTransition(target),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
RangeTransition(target, Token.EOF, arg2) if arg3 != 0 else RangeTransition(target, arg1, arg2),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
RuleTransition(atn.states[arg1], arg2, arg3, target),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
PredicateTransition(target, arg1, arg2, arg3 != 0),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
AtomTransition(target, Token.EOF) if arg3 != 0 else AtomTransition(target, arg1),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
ActionTransition(target, arg1, arg2, arg3 != 0),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
SetTransition(target, sets[arg1]),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
NotSetTransition(target, sets[arg1]),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
WildcardTransition(target),
lambda atn, src, trg, arg1, arg2, arg3, sets, target : \
PrecedencePredicateTransition(target, arg1)
]
def edgeFactory(self, atn:ATN, type:int, src:int, trg:int, arg1:int, arg2:int, arg3:int, sets:list):
target = atn.states[trg]
if type > len(self.edgeFactories) or self.edgeFactories[type] is None:
raise Exception("The specified transition type: " + str(type) + " is not valid.")
else:
return self.edgeFactories[type](atn, src, trg, arg1, arg2, arg3, sets, target)
stateFactories = [ lambda : None,
lambda : BasicState(),
lambda : RuleStartState(),
lambda : BasicBlockStartState(),
lambda : PlusBlockStartState(),
lambda : StarBlockStartState(),
lambda : TokensStartState(),
lambda : RuleStopState(),
lambda : BlockEndState(),
lambda : StarLoopbackState(),
lambda : StarLoopEntryState(),
lambda : PlusLoopbackState(),
lambda : LoopEndState()
]
def stateFactory(self, type:int, ruleIndex:int):
if type> len(self.stateFactories) or self.stateFactories[type] is None:
raise Exception("The specified state type " + str(type) + " is not valid.")
else:
s = self.stateFactories[type]()
if s is not None:
s.ruleIndex = ruleIndex
return s
CHANNEL = 0 #The type of a {@link LexerChannelAction} action.
CUSTOM = 1 #The type of a {@link LexerCustomAction} action.
MODE = 2 #The type of a {@link LexerModeAction} action.
MORE = 3 #The type of a {@link LexerMoreAction} action.
POP_MODE = 4 #The type of a {@link LexerPopModeAction} action.
PUSH_MODE = 5 #The type of a {@link LexerPushModeAction} action.
SKIP = 6 #The type of a {@link LexerSkipAction} action.
TYPE = 7 #The type of a {@link LexerTypeAction} action.
actionFactories = [ lambda data1, data2: LexerChannelAction(data1),
lambda data1, data2: LexerCustomAction(data1, data2),
lambda data1, data2: LexerModeAction(data1),
lambda data1, data2: LexerMoreAction.INSTANCE,
lambda data1, data2: LexerPopModeAction.INSTANCE,
lambda data1, data2: LexerPushModeAction(data1),
lambda data1, data2: LexerSkipAction.INSTANCE,
lambda data1, data2: LexerTypeAction(data1)
]
def lexerActionFactory(self, type:int, data1:int, data2:int):
if type > len(self.actionFactories) or self.actionFactories[type] is None:
raise Exception("The specified lexer action type " + str(type) + " is not valid.")
else:
return self.actionFactories[type](data1, data2)