""" This module implements a particle system for complex animcation effects. For more details, see http://asciimatics.readthedocs.io/en/latest/animation.html """ from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from abc import ABCMeta, abstractmethod from builtins import object from builtins import range from copy import copy from math import pi, sin, cos, sqrt from random import uniform, randint from future.utils import with_metaclass from asciimatics.effects import Effect from asciimatics.screen import Screen class Particle(object): """ A single particle in a Particle Effect. """ def __init__(self, chars, x, y, dx, dy, colours, life_time, move, next_colour=None, next_char=None, parm=None, on_create=None, on_each=None, on_destroy=None): """ :param chars: String of characters to use for the particle. :param x: The initial horizontal position of the particle. :param y: The initial vertical position of the particle. :param dx: The initial horizontal velocity of the particle. :param dy: The initial vertical velocity of the particle. :param colours: A list of colour tuples to use for the particle. :param life_time: The life time of the particle. :param move: A function which returns the next location of the particle. :param next_colour: An optional function to return the next colour for the particle. Defaults to a linear progression of `chars`. :param next_char: An optional function to return the next character for the particle. Defaults to a linear progression of `colours`. :param parm: An optional parameter for use within any of the :param on_create: An optional function to spawn new particles when this particle first is created. :param on_each: An optional function to spawn new particles for every frame of this particle (other than creation/destruction). :param on_destroy: An optional function to spawn new particles when this particle is destroyed. """ self.chars = chars self.x = x self.y = y self.dx = dx self.dy = dy self.colours = colours self.time = 0 self.life_time = life_time self._move = move self._next_colour = ( self._default_next_colour if next_colour is None else next_colour) self._next_char = ( self._default_next_char if next_char is None else next_char) self._last = None self.parm = parm self._on_create = on_create self._on_each = on_each self._on_destroy = on_destroy @staticmethod def _default_next_char(particle): """ Default next character implementation - linear progression through each character. """ return particle.chars[ (len(particle.chars) - 1) * particle.time // particle.life_time] @staticmethod def _default_next_colour(particle): """ Default next colour implementation - linear progression through each colour tuple. """ return particle.colours[ (len(particle.colours) - 1) * particle.time // particle.life_time] def last(self): """ The last attributes returned for this particle - typically used for clearing out the particle on the next frame. See :py:meth:`.next` for details of the returned results. """ return self._last def next(self): """ The set of attributes for this particle for the next frame to be rendered. :returns: A tuple of (character, x, y, fg, attribute, bg) """ # Get next particle details x, y = self._move(self) colour = self._next_colour(self) char = self._next_char(self) self._last = char, x, y, colour[0], colour[1], colour[2] self.time += 1 # Trigger any configured events if self.time == 1 and self._on_create is not None: self._on_create(self) elif self.life_time == self.time and self._on_destroy is not None: self._on_destroy(self) elif self._on_each is not None: self._on_each(self) return self._last class ParticleEmitter(object): """ An emitter for a particle system to create a set of :py:obj:`._Particle` objects for a :py:obj:`.ParticleEffect`. After initialization, the emitter will be called once per frame to be displayed on the Screen. """ def __init__(self, screen, x, y, count, new_particle, spawn, life_time, blend=False): """ :param screen: The screen to which the particle system will be rendered. :param x: The x location of origin of the particle system. :param y: The y location of origin of the particle system. :param count: The count of new particles to spawn on each frame. :param new_particle: The function to call to spawn a new particle. :param spawn: The number of frames for which to spawn particles. :param life_time: The life time of the whole particle system. :param blend: Whether to blend particles or not. A blended system picks the colour based on the number of overlapping particles, while an unblended one picks the colour based on a the state of Each Particle individually as they are drawn. Defaults to False. """ super(ParticleEmitter, self).__init__() self._screen = screen self._x = x self._y = y self._count = count self._new_particle = new_particle self._life_time = life_time self.particles = [] self.time_left = spawn self._blend = blend @staticmethod def _find_colour(particle, start_index, screen_data): """ Helper function to find an existing colour in the particle palette. """ _, fg2, attr2, bg2 = screen_data index = start_index for i, colours in enumerate(particle.colours): if (fg2, attr2, bg2) == colours: index = i break return index def update(self): """ The function to draw a new frame for the particle system. """ # Spawn new particles if required if self.time_left > 0: self.time_left -= 1 for _ in range(self._count): new_particle = self._new_particle() if new_particle is not None: self.particles.append(new_particle) # Now draw them all for particle in self.particles: # Clear our the old particle last = particle.last() if last is not None: char, x, y, fg, attr, bg = last screen_data = self._screen.get_from(x, y) if self._blend and screen_data: index = self._find_colour(particle, 0, screen_data) - 1 fg, attr, bg = particle.colours[max(index, 0)] self._screen.print_at(" ", x, y, fg, attr, bg) if particle.time < particle.life_time: # Draw the new one char, x, y, fg, attr, bg = particle.next() screen_data = self._screen.get_from(x, y) if self._blend and screen_data: index = self._find_colour(particle, -1, screen_data) + 1 fg, attr, bg = \ particle.colours[min(index, len(particle.colours) - 1)] self._screen.print_at(char, x, y, fg, attr, bg) else: self.particles.remove(particle) class ParticleEffect(with_metaclass(ABCMeta, Effect)): """ An Effect that uses a :py:obj:`.ParticleEmitter` to create the animation. To define a new ParticleEffect, you must implement the reset() method to construct a chain of ParticleEmitter objects and append them to the internal _active_systems list. """ def __init__(self, screen, x, y, life_time, **kwargs): """ :param screen: The Screen being used for the Scene. :param x: The column (x coordinate) for the origin of the effect. :param y: The line (y coordinate) for the origin of the effect. :param life_time: The life time of the effect. Also see the common keyword arguments in :py:obj:`.Effect`. """ super(ParticleEffect, self).__init__(screen, **kwargs) self._x = x self._y = y self._life_time = life_time self._active_systems = [] self.reset() @abstractmethod def reset(self): """ Reset the particle effect back to its initial state. This must be implemented by the child classes. """ def _update(self, frame_no): # Take a copy in case a new system is added to the list this iteration. for system in copy(self._active_systems): if len(system.particles) > 0 or system.time_left > 0: system.update() else: self._active_systems.remove(system) @property def stop_frame(self): return self._stop_frame class Rocket(ParticleEmitter): """ A rocket being launched from the ground. """ def __init__(self, screen, x, y, life_time, on_destroy=None): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of the rocket. :param y: The line (y coordinate) for the origin of the rocket. :param life_time: The life time of the rocket. :param on_destroy: The function to call when the rocket explodes. """ super(Rocket, self).__init__( screen, x, screen.height - 1, 1, self._next_particle, 1, life_time) self._end_y = y self._acceleration = (self._end_y - self._y) // life_time self._on_destroy = on_destroy def _next_particle(self): return Particle("|", self._x, self._y, 0, self._acceleration, [(Screen.COLOUR_YELLOW, Screen.A_BOLD, 0)], self._life_time, self._move, on_destroy=self._on_destroy) def _move(self, particle): particle.x += particle.dx particle.y += particle.dy if particle.y <= self._end_y: # Rounding errors may mean we need to end slightly early. particle.y = self._end_y particle.time = self._life_time - 1 return int(particle.x), int(particle.y) class RingExplosion(ParticleEmitter): """ A classic firework explosion in a simple ring. """ def __init__(self, screen, x, y, life_time): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of this explosion. :param y: The line (y coordinate) for the origin of this explosion. :param life_time: The life time of this explosion. """ super(RingExplosion, self).__init__( screen, x, y, 30, self._next_particle, 1, life_time) self._colour = randint(1, 7) self._acceleration = 1.0 - (1.0 / life_time) def _next_particle(self): direction = uniform(0, 2 * pi) return Particle("***:. ", self._x, self._y, sin(direction) * 3 * 8 / self._life_time, cos(direction) * 1.5 * 8 / self._life_time, [(self._colour, Screen.A_BOLD, 0), (self._colour, 0, 0), (0, 0, 0)], self._life_time, self._explode) def _explode(self, particle): # Simulate some gravity and slowdown in explosion particle.dy = particle.dy * self._acceleration + 0.03 particle.dx *= self._acceleration particle.x += particle.dx particle.y += particle.dy return int(particle.x), int(particle.y) class SerpentExplosion(ParticleEmitter): """ A firework explosion where each trail changes direction. """ def __init__(self, screen, x, y, life_time): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of this explosion. :param y: The line (y coordinate) for the origin of this explosion. :param life_time: The life time of this explosion. """ super(SerpentExplosion, self).__init__( screen, x, y, 8, self._next_particle, 2, life_time) self._colour = randint(1, 7) def _next_particle(self): direction = uniform(0, 2 * pi) acceleration = uniform(0, 2 * pi) return Particle("++++- ", self._x, self._y, cos(direction), sin(direction) / 2, [(self._colour, Screen.A_BOLD, 0), (0, 0, 0)], self._life_time, self._explode, parm=acceleration) @staticmethod def _explode(particle): # Change direction like a serpent firework. if particle.time % 3 == 0: particle.parm = uniform(0, 2 * pi) particle.dx = (particle.dx + cos(particle.parm) / 2) * 0.8 particle.dy = (particle.dy + sin(particle.parm) / 4) * 0.8 particle.x += particle.dx particle.y += particle.dy return int(particle.x), int(particle.y) class StarExplosion(ParticleEmitter): """ A classic firework explosion to a Peony shape with trails. """ def __init__(self, screen, x, y, life_time, points, on_each): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of this explosion. :param y: The line (y coordinate) for the origin of this explosion. :param life_time: The life time of this explosion. :param points: Number of points the explosion should have. :param on_each: The function to call to spawn a trail. """ super(StarExplosion, self).__init__( screen, x, y, points, self._next_particle, 1, life_time) self._colour = randint(1, 7) self._acceleration = 1.0 - (1.0 / life_time) self._on_each = on_each self._points = points self._point_count = 0 def _next_particle(self): direction = self._point_count * 2 * pi / self._points self._point_count += 1 return Particle("+", self._x, self._y, sin(direction) * 3 * 8 / self._life_time, cos(direction) * 1.5 * 8 / self._life_time, [(self._colour, Screen.A_BOLD, 0), (0, 0, 0)], self._life_time, self._explode, on_each=self._on_each) def _explode(self, particle): # Simulate some gravity and slowdown in explosion particle.dy = particle.dy * self._acceleration + 0.03 particle.dx *= self._acceleration particle.x += particle.dx particle.y += particle.dy return int(particle.x), int(particle.y) class StarTrail(ParticleEmitter): """ A trail for a :py:obj:`.StarExplosion`. """ def __init__(self, screen, x, y, life_time, colour): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of this trail. :param y: The line (y coordinate) for the origin of this trail. :param life_time: The life time of this trail. :param colour: The colour of this trail. """ super(StarTrail, self).__init__( screen, x, y, 1, self._next_particle, 1, life_time) self._colour = colour def _next_particle(self): return Particle("+:,. ", self._x, self._y, 0, 0, [(self._colour, Screen.A_BOLD, 0), (self._colour, 0, 0), (0, 0, 0)], self._life_time, self._twinkle) @staticmethod def _twinkle(particle): # Simulate some gravity particle.dy += 0.03 particle.y += particle.dy return int(particle.x), int(particle.y) class PalmExplosion(ParticleEmitter): """ A classic firework explosion into a palm shape. """ def __init__(self, screen, x, y, life_time, on_each=None): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of this explosion. :param y: The line (y coordinate) for the origin of this explosion. :param life_time: The life time of this explosion. :param on_each: The function to call to spawn a trail. """ super(PalmExplosion, self).__init__( screen, x, y, 6, self._next_particle, 2, life_time) self._colour = randint(1, 7) self._on_each = on_each self._arc_start = uniform(pi / 6, pi / 3) self._arc_end = self._arc_start + uniform(pi / 6, pi / 2) def _next_particle(self): direction = uniform(self._arc_start, self._arc_end) return Particle("* ", self._x, self._y, cos(direction) * 1.5, -sin(direction), [(self._colour, Screen.A_BOLD, 0), (0, 0, 0)], self._life_time, self._explode, on_each=self._on_each) @staticmethod def _explode(particle): # Simulate some gravity particle.dy += 0.2 particle.x += particle.dx particle.y += particle.dy return int(particle.x), int(particle.y) class ExplosionFlames(ParticleEmitter): """ An explosion of flame and smoke. """ def __init__(self, screen, x, y, life_time): """ :param screen: The Screen being used for this particle system. :param x: The column (x coordinate) for the origin of this explosion. :param y: The line (y coordinate) for the origin of this explosion. :param life_time: The life time of this explosion. """ super(ExplosionFlames, self).__init__( screen, x, y, 30, self._next_particle, life_time - 10, life_time, blend=True) def _next_particle(self): direction = uniform(0, 2 * pi) d = self._life_time - 10 r = uniform(0, sin(pi * (d - self.time_left) / (d * 2))) * 3.0 return Particle("#", self._x + sin(direction) * r * 2.0, self._y + cos(direction) * r, sin(direction) / 2.0, cos(direction) / 4.0, [ (Screen.COLOUR_BLACK, 0, 0), (Screen.COLOUR_RED, 0, 0), (Screen.COLOUR_RED, Screen.A_BOLD, 0), (Screen.COLOUR_YELLOW, Screen.A_BOLD, 0), (Screen.COLOUR_WHITE, Screen.A_BOLD, 0), ], 10, self._burn, next_colour=self._colour) @staticmethod def _burn(particle): particle.x += particle.dx particle.y += particle.dy return int(particle.x), int(particle.y) @staticmethod def _colour(particle): return particle.colours[0] class DropEmitter(ParticleEmitter): """ Replicate the whole screen with Particles and then drop them a cell at a time. """ def __init__(self, screen, life_time): """ :param screen: The Screen being used for this particle system. :param life_time: The life time of this particle system. """ super(DropEmitter, self).__init__( screen, 0, 0, 20, self._next_particle, life_time, life_time) self._particles = None self._full_count = 0 def _next_particle(self): # Find all particles on the Screen when we create our first particle. if self._particles is None: self._particles = [] for x in range(self._screen.width): for y in range(self._screen.height): ch, fg, attr, bg = self._screen.get_from(x, y) if ch != 32: self._particles.insert( randint(0, len(self._particles)), (x, y, ch, fg, attr, bg)) self._full_count += 1 # Stop now if there were no more particles to move. if len(self._particles) == 0: return None # We got here, so there must still be some screen estate to move. if randint(0, len(self._particles)) < self._full_count * 0.1: x, y, ch, fg, attr, bg = self._particles.pop() return Particle(chr(ch), x, y, 0.0, 0.0, [(fg, attr, bg)], self._life_time, self._move) @staticmethod def _move(particle): result = int(particle.x), int(particle.y) particle.x += particle.dx particle.y += particle.dy particle.dy += 0.3 return result class ShotEmitter(ParticleEmitter): """ Replicate the whole screen with Particles and then explode the screen from a given location. """ def __init__(self, screen, x, y, diameter, life_time): """ :param screen: The Screen being used for this particle system. :param x: The x position of the origin of the explosion. :param y: The y position of the origin of the explosion. :param diameter: The diameter of the explosion. :param life_time: The life time of this particle system. """ super(ShotEmitter, self).__init__( screen, x, y, 50, self._next_particle, life_time, life_time) self._particles = None self._diameter = diameter def _next_particle(self): # Find all particles on the Screen when we create our first particle # and sort by distance from the origin. if self._particles is None: self._particles = [] for x in range(self._screen.width): for y in range(self._screen.height): ch, fg, attr, bg = self._screen.get_from(x, y) if ch != 32: self._particles.append((x, y, ch, fg, attr, bg)) if self._diameter: self._particles = filter(self._filter, self._particles) self._particles = sorted(self._particles, key=self._sort, reverse=True) # Stop now if there were no more particles to move. if len(self._particles) == 0: return None # We got here, so there must still be some screen estate to move. x, y, ch, fg, attr, bg = self._particles.pop() r = min(10, max(0.001, sqrt(((x - self._x) ** 2) + ((y - self._y) ** 2)))) return Particle(chr(ch), x, y, (x - self._x) * 40.0 / r ** 2, (y - self._y) * 20.0 / r ** 2, [(fg, attr, bg)], self._life_time, self._move) def _sort(self, data): dx = data[0] - self._x dy = data[1] - self._y return (dx * dx / 4.0) + (dy * dy) def _filter(self, data): dx = data[0] - self._x dy = data[1] - self._y return dx ** 2 / 4.0 + dy ** 2 < self._diameter ** 2 / 4.0 @staticmethod def _move(particle): result = int(particle.x), int(particle.y) if (particle.dx, particle.dy) == (0, 0): particle.dx, particle.dy = 100, 100 particle.x += particle.dx particle.y += particle.dy return result class RainSource(ParticleEmitter): """ Source of the raindrops for a rain storm effect. This emits rain drops from a single line at the top of the screen (starting sufficiently off- screen to ensure that it can cover all the screen due to horizontal motion). """ def __init__(self, screen, life_time, on_each): """ :param screen: The Screen being used for this particle system. :param life_time: The life time of this particle system. :param on_each: Function to call on each iteration of the particle. """ super(RainSource, self).__init__( screen, 0, 0, 4, self._next_particle, life_time, life_time) self._particles = None self._on_each = on_each def _next_particle(self): speed = randint(1, 3) return Particle(" ``\\"[speed], randint(-self._screen.height, self._screen.width), 0, (speed + 1) / 2.0, (speed + 1) / 2.0, [(Screen.COLOUR_CYAN, 0, 0)], self._life_time, self._move, on_each=self._on_each) @staticmethod def _move(particle): particle.x += particle.dx particle.y += particle.dy return int(particle.x), int(particle.y) class Splash(ParticleEmitter): """ Splash effect for falling rain. """ def __init__(self, screen, x, y): """ :param screen: The Screen being used for this particle system. """ super(Splash, self).__init__( screen, x, y, 1, self._next_particle, 1, 3) def _next_particle(self): return Particle("v", self._x, self._y, 0, 0, [(Screen.COLOUR_CYAN, 0, 0)], self._life_time, self._splash) @staticmethod def _splash(particle): return int(particle.x), int(particle.y) class StarFirework(ParticleEffect): """ Classic rocket with star explosion. """ def reset(self): self._active_systems = [] self._active_systems.append( Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next)) def _next(self, parent): self._active_systems.append( StarExplosion( self._screen, parent.x, parent.y, self._life_time - 10, randint(6, 20), on_each=self._trail)) def _trail(self, parent): if len(self._active_systems) < 150 and randint(0, 100) < 50: self._active_systems.insert( 0, StarTrail(self._screen, parent.x, parent.y, 10, parent.colours[0][0])) class RingFirework(ParticleEffect): """ Classic rocket with ring explosion. """ def reset(self): self._active_systems = [] self._active_systems.append( Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next)) def _next(self, parent): self._active_systems.append(RingExplosion( self._screen, parent.x, parent.y, self._life_time - 10)) class SerpentFirework(ParticleEffect): """ A firework where each trail changes direction. """ def reset(self): self._active_systems = [] self._active_systems.append( Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next)) def _next(self, parent): self._active_systems.append(SerpentExplosion( self._screen, parent.x, parent.y, self._life_time - 10)) class PalmFirework(ParticleEffect): """ Classic palm shaped firework. """ def reset(self): self._active_systems = [] self._active_systems.append( Rocket(self._screen, self._x, self._y, 10, on_destroy=self._next)) def _next(self, parent): self._active_systems.append(PalmExplosion( self._screen, parent.x, parent.y, self._life_time - 10, on_each=self._trail)) def _trail(self, parent): if len(self._active_systems) < 100 and randint(0, 100) < 80: self._active_systems.insert( 0, StarTrail(self._screen, parent.x, parent.y, 10, parent.colours[0][0])) class Explosion(ParticleEffect): """ An explosion effect. """ def reset(self): self._active_systems = [] self._active_systems.append( ExplosionFlames(self._screen, self._x, self._y, self._life_time)) class DropScreen(ParticleEffect): """ Drop all the text on the screen as if it was subject to gravity. """ def __init__(self, screen, life_time, **kwargs): """ See :py:obj:`.ParticleEffect` for details of the parameters. """ # No need for an origin as this uses the whole screen. super(DropScreen, self).__init__(screen, 0, 0, life_time, **kwargs) def reset(self): self._active_systems = [] self._active_systems.append( DropEmitter(self._screen, self._life_time)) class ShootScreen(ParticleEffect): """ Shoot the screen out like a massive gunshot. """ def __init__(self, screen, x, y, life_time, diameter=None, **kwargs): """ See :py:obj:`.ParticleEffect` for details of the parameters. In addition, it is possible to set the diameter of this effect using the extra keyword parameter. """ # Need to set the field first because the underlying constructor calls reset. self._diameter = diameter super(ShootScreen, self).__init__(screen, x, y, life_time, **kwargs) def reset(self): self._active_systems = [] self._active_systems.append( ShotEmitter(self._screen, self._x, self._y, self._diameter, self._life_time)) class Rain(ParticleEffect): """ Rain storm effect. """ def __init__(self, screen, life_time, **kwargs): """ See :py:obj:`.ParticleEffect` for details of the parameters. """ # No need for an origin as this uses the whole screen. super(Rain, self).__init__(screen, 0, 0, life_time, **kwargs) def reset(self): self._active_systems = [] self._active_systems.append( RainSource(self._screen, self._life_time, self._collision)) def _collision(self, particle): # Already calculated new position, so go back in history _, x, y, _, _, _ = particle.last() # Note that dx = dy, so simply calculation of next point to check. current_char = None dx = 0 for dx in range(min(1, int(particle.dx))): next_point = self._screen.get_from(int(x + dx), int(y + dx)) if next_point is None: current_char = None break current_char = next_point[0] if current_char != 32: break # If there's a collision, kill this drop and make a splash. if (current_char not in [32, None, ord("`"), ord("\\"), ord("v")] or particle.y + dx >= self._screen.height): particle.time = particle.life_time self._active_systems.append( Splash(self._screen, x + dx - 1, y + dx - 1))