Shofel2_T124_python/venv/lib/python3.10/site-packages/elftools/elf/elffile.py

848 lines
36 KiB
Python
Raw Normal View History

2024-05-25 16:45:07 +00:00
#-------------------------------------------------------------------------------
# elftools: elf/elffile.py
#
# ELFFile - main class for accessing ELF files
#
# Eli Bendersky (eliben@gmail.com)
# This code is in the public domain
#-------------------------------------------------------------------------------
import io
from io import BytesIO
import os
import struct
import zlib
try:
import resource
PAGESIZE = resource.getpagesize()
except ImportError:
try:
# Windows system
import mmap
PAGESIZE = mmap.PAGESIZE
except ImportError:
# Jython
PAGESIZE = 4096
from ..common.exceptions import ELFError, ELFParseError
from ..common.utils import struct_parse, elf_assert
from .structs import ELFStructs
from .sections import (
Section, StringTableSection, SymbolTableSection,
SymbolTableIndexSection, SUNWSyminfoTableSection, NullSection,
NoteSection, StabSection, ARMAttributesSection, RISCVAttributesSection)
from .dynamic import DynamicSection, DynamicSegment
from .relocation import (RelocationSection, RelocationHandler,
RelrRelocationSection)
from .gnuversions import (
GNUVerNeedSection, GNUVerDefSection,
GNUVerSymSection)
from .segments import Segment, InterpSegment, NoteSegment
from ..dwarf.dwarfinfo import DWARFInfo, DebugSectionDescriptor, DwarfConfig
from ..ehabi.ehabiinfo import EHABIInfo
from .hash import ELFHashSection, GNUHashSection
from .constants import SHN_INDICES
class ELFFile(object):
""" Creation: the constructor accepts a stream (file-like object) with the
contents of an ELF file.
Optionally, a stream_loader function can be passed as the second
argument. This stream_loader function takes a relative file path to
load a supplementary object file, and returns a stream suitable for
creating a new ELFFile. Currently, the only such relative file path is
obtained from the supplementary object files.
Accessible attributes:
stream:
The stream holding the data of the file - must be a binary
stream (bytes, not string).
elfclass:
32 or 64 - specifies the word size of the target machine
little_endian:
boolean - specifies the target machine's endianness
elftype:
string or int, either known value of E_TYPE enum defining ELF
type (e.g. executable, dynamic library or core dump) or integral
unparsed value
header:
the complete ELF file header
e_ident_raw:
the raw e_ident field of the header
"""
def __init__(self, stream, stream_loader=None):
self.stream = stream
self.stream.seek(0, io.SEEK_END)
self.stream_len = self.stream.tell()
self._identify_file()
self.structs = ELFStructs(
little_endian=self.little_endian,
elfclass=self.elfclass)
self.structs.create_basic_structs()
self.header = self._parse_elf_header()
self.structs.create_advanced_structs(
self['e_type'],
self['e_machine'],
self['e_ident']['EI_OSABI'])
self.stream.seek(0)
self.e_ident_raw = self.stream.read(16)
self._section_header_stringtable = \
self._get_section_header_stringtable()
self._section_name_map = None
self.stream_loader = stream_loader
@classmethod
def load_from_path(cls, path):
"""Takes a path to a file on the local filesystem, and returns an
ELFFile from it, setting up a correct stream_loader relative to the
original file.
"""
base_directory = os.path.dirname(path)
def loader(elf_path):
# FIXME: use actual path instead of str/bytes
if not os.path.isabs(elf_path):
elf_path = os.path.join(base_directory,
elf_path)
return open(elf_path, 'rb')
stream = open(path, 'rb')
return ELFFile(stream, loader)
def num_sections(self):
""" Number of sections in the file
"""
if self['e_shoff'] == 0:
return 0
# From the ELF ABI documentation at
# https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.sheader.html:
# "e_shnum normally tells how many entries the section header table
# contains. [...] If the number of sections is greater than or equal to
# SHN_LORESERVE (0xff00), e_shnum has the value SHN_UNDEF (0) and the
# actual number of section header table entries is contained in the
# sh_size field of the section header at index 0 (otherwise, the sh_size
# member of the initial entry contains 0)."
if self['e_shnum'] == 0:
return self._get_section_header(0)['sh_size']
return self['e_shnum']
def get_section(self, n):
""" Get the section at index #n from the file (Section object or a
subclass)
"""
section_header = self._get_section_header(n)
return self._make_section(section_header)
def get_section_by_name(self, name):
""" Get a section from the file, by name. Return None if no such
section exists.
"""
# The first time this method is called, construct a name to number
# mapping
#
if self._section_name_map is None:
self._make_section_name_map()
secnum = self._section_name_map.get(name, None)
return None if secnum is None else self.get_section(secnum)
def get_section_index(self, section_name):
""" Gets the index of the section by name. Return None if no such
section name exists.
"""
# The first time this method is called, construct a name to number
# mapping
#
if self._section_name_map is None:
self._make_section_name_map()
return self._section_name_map.get(section_name, None)
def iter_sections(self, type=None):
""" Yield all the sections in the file. If the optional |type|
parameter is passed, this method will only yield sections of the
given type. The parameter value must be a string containing the
name of the type as defined in the ELF specification, e.g.
'SHT_SYMTAB'.
"""
for i in range(self.num_sections()):
section = self.get_section(i)
if type is None or section['sh_type'] == type:
yield section
def num_segments(self):
""" Number of segments in the file
"""
# From: https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
# Section: 4.1.2 Number of Program Headers
# If the number of program headers is greater than or equal to
# PN_XNUM (0xffff), this member has the value PN_XNUM
# (0xffff). The actual number of program header table entries
# is contained in the sh_info field of the section header at
# index 0.
if self['e_phnum'] < 0xffff:
return self['e_phnum']
else:
return self.get_section(0)['sh_info']
def get_segment(self, n):
""" Get the segment at index #n from the file (Segment object)
"""
segment_header = self._get_segment_header(n)
return self._make_segment(segment_header)
def iter_segments(self, type=None):
""" Yield all the segments in the file. If the optional |type|
parameter is passed, this method will only yield segments of the
given type. The parameter value must be a string containing the
name of the type as defined in the ELF specification, e.g.
'PT_LOAD'.
"""
for i in range(self.num_segments()):
segment = self.get_segment(i)
if type is None or segment['p_type'] == type:
yield segment
def address_offsets(self, start, size=1):
""" Yield a file offset for each ELF segment containing a memory region.
A memory region is defined by the range [start...start+size). The
offset of the region is yielded.
"""
end = start + size
# consider LOAD only to prevent same address being yielded twice
for seg in self.iter_segments(type='PT_LOAD'):
if (start >= seg['p_vaddr'] and
end <= seg['p_vaddr'] + seg['p_filesz']):
yield start - seg['p_vaddr'] + seg['p_offset']
def has_dwarf_info(self):
""" Check whether this file appears to have debugging information.
We assume that if it has the .debug_info or .zdebug_info section, it
has all the other required sections as well.
"""
return bool(self.get_section_by_name('.debug_info') or
self.get_section_by_name('.zdebug_info') or
self.get_section_by_name('.eh_frame'))
def get_dwarf_info(self, relocate_dwarf_sections=True, follow_links=True):
""" Return a DWARFInfo object representing the debugging information in
this file.
If relocate_dwarf_sections is True, relocations for DWARF sections
are looked up and applied.
If follow_links is True, we will try to load the supplementary
object file (if any), and use it to resolve references and imports.
"""
# Expect that has_dwarf_info was called, so at least .debug_info is
# present.
# Sections that aren't found will be passed as None to DWARFInfo.
section_names = ('.debug_info', '.debug_aranges', '.debug_abbrev',
'.debug_str', '.debug_line', '.debug_frame',
'.debug_loc', '.debug_ranges', '.debug_pubtypes',
'.debug_pubnames', '.debug_addr',
'.debug_str_offsets', '.debug_line_str',
'.debug_loclists', '.debug_rnglists',
'.debug_sup', '.gnu_debugaltlink')
compressed = bool(self.get_section_by_name('.zdebug_info'))
if compressed:
section_names = tuple(map(lambda x: '.z' + x[1:], section_names))
# As it is loaded in the process image, .eh_frame cannot be compressed
section_names += ('.eh_frame', )
(debug_info_sec_name, debug_aranges_sec_name, debug_abbrev_sec_name,
debug_str_sec_name, debug_line_sec_name, debug_frame_sec_name,
debug_loc_sec_name, debug_ranges_sec_name, debug_pubtypes_name,
debug_pubnames_name, debug_addr_name, debug_str_offsets_name,
debug_line_str_name, debug_loclists_sec_name, debug_rnglists_sec_name,
debug_sup_name, gnu_debugaltlink_name, eh_frame_sec_name) = section_names
debug_sections = {}
for secname in section_names:
section = self.get_section_by_name(secname)
if section is None:
debug_sections[secname] = None
else:
dwarf_section = self._read_dwarf_section(
section,
relocate_dwarf_sections)
if compressed and secname.startswith('.z'):
dwarf_section = self._decompress_dwarf_section(dwarf_section)
debug_sections[secname] = dwarf_section
# Lookup if we have any of the .gnu_debugaltlink (GNU proprietary
# implementation) or .debug_sup sections, referencing a supplementary
# DWARF file
dwarfinfo = DWARFInfo(
config=DwarfConfig(
little_endian=self.little_endian,
default_address_size=self.elfclass // 8,
machine_arch=self.get_machine_arch()),
debug_info_sec=debug_sections[debug_info_sec_name],
debug_aranges_sec=debug_sections[debug_aranges_sec_name],
debug_abbrev_sec=debug_sections[debug_abbrev_sec_name],
debug_frame_sec=debug_sections[debug_frame_sec_name],
eh_frame_sec=debug_sections[eh_frame_sec_name],
debug_str_sec=debug_sections[debug_str_sec_name],
debug_loc_sec=debug_sections[debug_loc_sec_name],
debug_ranges_sec=debug_sections[debug_ranges_sec_name],
debug_line_sec=debug_sections[debug_line_sec_name],
debug_pubtypes_sec=debug_sections[debug_pubtypes_name],
debug_pubnames_sec=debug_sections[debug_pubnames_name],
debug_addr_sec=debug_sections[debug_addr_name],
debug_str_offsets_sec=debug_sections[debug_str_offsets_name],
debug_line_str_sec=debug_sections[debug_line_str_name],
debug_loclists_sec=debug_sections[debug_loclists_sec_name],
debug_rnglists_sec=debug_sections[debug_rnglists_sec_name],
debug_sup_sec=debug_sections[debug_sup_name],
gnu_debugaltlink_sec=debug_sections[gnu_debugaltlink_name]
)
if follow_links:
dwarfinfo.supplementary_dwarfinfo = self.get_supplementary_dwarfinfo(dwarfinfo)
return dwarfinfo
def get_supplementary_dwarfinfo(self, dwarfinfo):
"""
Read supplementary dwarfinfo, from either the standared .debug_sup
section or the GNU proprietary .gnu_debugaltlink.
"""
supfilepath = dwarfinfo.parse_debugsupinfo()
if supfilepath is not None and self.stream_loader is not None:
stream = self.stream_loader(supfilepath)
supelffile = ELFFile(stream)
dwarf_info = supelffile.get_dwarf_info()
stream.close()
return dwarf_info
return None
def has_ehabi_info(self):
""" Check whether this file appears to have arm exception handler index table.
"""
return any(self.iter_sections(type='SHT_ARM_EXIDX'))
def get_ehabi_infos(self):
""" Generally, shared library and executable contain 1 .ARM.exidx section.
Object file contains many .ARM.exidx sections.
So we must traverse every section and filter sections whose type is SHT_ARM_EXIDX.
"""
_ret = []
if self['e_type'] == 'ET_REL':
# TODO: support relocatable file
assert False, "Current version of pyelftools doesn't support relocatable file."
for section in self.iter_sections(type='SHT_ARM_EXIDX'):
_ret.append(EHABIInfo(section, self.little_endian))
return _ret if len(_ret) > 0 else None
def get_machine_arch(self):
""" Return the machine architecture, as detected from the ELF header.
"""
architectures = {
'EM_M32' : 'AT&T WE 32100',
'EM_SPARC' : 'SPARC',
'EM_386' : 'x86',
'EM_68K' : 'Motorola 68000',
'EM_88K' : 'Motorola 88000',
'EM_IAMCU' : 'Intel MCU',
'EM_860' : 'Intel 80860',
'EM_MIPS' : 'MIPS',
'EM_S370' : 'IBM System/370',
'EM_MIPS_RS3_LE' : 'MIPS RS3000 Little-endian',
'EM_PARISC' : 'Hewlett-Packard PA-RISC',
'EM_VPP500' : 'Fujitsu VPP500',
'EM_SPARC32PLUS' : 'Enhanced SPARC',
'EM_960' : 'Intel 80960',
'EM_PPC' : 'PowerPC',
'EM_PPC64' : '64-bit PowerPC',
'EM_S390' : 'IBM System/390',
'EM_SPU' : 'IBM SPU/SPC',
'EM_V800' : 'NEC V800',
'EM_FR20' : 'Fujitsu FR20',
'EM_RH32' : 'TRW RH-32',
'EM_RCE' : 'Motorola RCE',
'EM_ARM' : 'ARM',
'EM_ALPHA' : 'Digital Alpha',
'EM_SH' : 'Hitachi SH',
'EM_SPARCV9' : 'SPARC Version 9',
'EM_TRICORE' : 'Siemens TriCore embedded processor',
'EM_ARC' : 'Argonaut RISC Core, Argonaut Technologies Inc.',
'EM_H8_300' : 'Hitachi H8/300',
'EM_H8_300H' : 'Hitachi H8/300H',
'EM_H8S' : 'Hitachi H8S',
'EM_H8_500' : 'Hitachi H8/500',
'EM_IA_64' : 'Intel IA-64',
'EM_MIPS_X' : 'MIPS-X',
'EM_COLDFIRE' : 'Motorola ColdFire',
'EM_68HC12' : 'Motorola M68HC12',
'EM_MMA' : 'Fujitsu MMA',
'EM_PCP' : 'Siemens PCP',
'EM_NCPU' : 'Sony nCPU',
'EM_NDR1' : 'Denso NDR1',
'EM_STARCORE' : 'Motorola Star*Core',
'EM_ME16' : 'Toyota ME16',
'EM_ST100' : 'STMicroelectronics ST100',
'EM_TINYJ' : 'Advanced Logic TinyJ',
'EM_X86_64' : 'x64',
'EM_PDSP' : 'Sony DSP',
'EM_PDP10' : 'Digital Equipment PDP-10',
'EM_PDP11' : 'Digital Equipment PDP-11',
'EM_FX66' : 'Siemens FX66',
'EM_ST9PLUS' : 'STMicroelectronics ST9+ 8/16 bit',
'EM_ST7' : 'STMicroelectronics ST7 8-bit',
'EM_68HC16' : 'Motorola MC68HC16',
'EM_68HC11' : 'Motorola MC68HC11',
'EM_68HC08' : 'Motorola MC68HC08',
'EM_68HC05' : 'Motorola MC68HC05',
'EM_SVX' : 'Silicon Graphics SVx',
'EM_ST19' : 'STMicroelectronics ST19 8-bit',
'EM_VAX' : 'Digital VAX',
'EM_CRIS' : 'Axis Communications 32-bit',
'EM_JAVELIN' : 'Infineon Technologies 32-bit',
'EM_FIREPATH' : 'Element 14 64-bit DSP',
'EM_ZSP' : 'LSI Logic 16-bit DSP',
'EM_MMIX' : 'Donald Knuth\'s educational 64-bit',
'EM_HUANY' : 'Harvard University machine-independent object files',
'EM_PRISM' : 'SiTera Prism',
'EM_AVR' : 'Atmel AVR 8-bit',
'EM_FR30' : 'Fujitsu FR30',
'EM_D10V' : 'Mitsubishi D10V',
'EM_D30V' : 'Mitsubishi D30V',
'EM_V850' : 'NEC v850',
'EM_M32R' : 'Mitsubishi M32R',
'EM_MN10300' : 'Matsushita MN10300',
'EM_MN10200' : 'Matsushita MN10200',
'EM_PJ' : 'picoJava',
'EM_OPENRISC' : 'OpenRISC 32-bit',
'EM_ARC_COMPACT' : 'ARC International ARCompact',
'EM_XTENSA' : 'Tensilica Xtensa',
'EM_VIDEOCORE' : 'Alphamosaic VideoCore',
'EM_TMM_GPP' : 'Thompson Multimedia',
'EM_NS32K' : 'National Semiconductor 32000 series',
'EM_TPC' : 'Tenor Network TPC',
'EM_SNP1K' : 'Trebia SNP 1000',
'EM_ST200' : 'STMicroelectronics ST200',
'EM_IP2K' : 'Ubicom IP2xxx',
'EM_MAX' : 'MAX',
'EM_CR' : 'National Semiconductor CompactRISC',
'EM_F2MC16' : 'Fujitsu F2MC16',
'EM_MSP430' : 'Texas Instruments msp430',
'EM_BLACKFIN' : 'Analog Devices Blackfin',
'EM_SE_C33' : 'Seiko Epson S1C33',
'EM_SEP' : 'Sharp',
'EM_ARCA' : 'Arca RISC',
'EM_UNICORE' : 'PKU-Unity MPRC',
'EM_EXCESS' : 'eXcess',
'EM_DXP' : 'Icera Semiconductor Deep Execution Processor',
'EM_ALTERA_NIOS2' : 'Altera Nios II',
'EM_CRX' : 'National Semiconductor CompactRISC CRX',
'EM_XGATE' : 'Motorola XGATE',
'EM_C166' : 'Infineon C16x/XC16x',
'EM_M16C' : 'Renesas M16C',
'EM_DSPIC30F' : 'Microchip Technology dsPIC30F',
'EM_CE' : 'Freescale Communication Engine RISC core',
'EM_M32C' : 'Renesas M32C',
'EM_TSK3000' : 'Altium TSK3000',
'EM_RS08' : 'Freescale RS08',
'EM_SHARC' : 'Analog Devices SHARC',
'EM_ECOG2' : 'Cyan Technology eCOG2',
'EM_SCORE7' : 'Sunplus S+core7 RISC',
'EM_DSP24' : 'New Japan Radio (NJR) 24-bit DSP',
'EM_VIDEOCORE3' : 'Broadcom VideoCore III',
'EM_LATTICEMICO32' : 'Lattice FPGA RISC',
'EM_SE_C17' : 'Seiko Epson C17',
'EM_TI_C6000' : 'TI TMS320C6000',
'EM_TI_C2000' : 'TI TMS320C2000',
'EM_TI_C5500' : 'TI TMS320C55x',
'EM_TI_ARP32' : 'TI Application Specific RISC, 32bit',
'EM_TI_PRU' : 'TI Programmable Realtime Unit',
'EM_MMDSP_PLUS' : 'STMicroelectronics 64bit VLIW',
'EM_CYPRESS_M8C' : 'Cypress M8C',
'EM_R32C' : 'Renesas R32C',
'EM_TRIMEDIA' : 'NXP Semiconductors TriMedia',
'EM_QDSP6' : 'QUALCOMM DSP6',
'EM_8051' : 'Intel 8051',
'EM_STXP7X' : 'STMicroelectronics STxP7x',
'EM_NDS32' : 'Andes Technology RISC',
'EM_ECOG1' : 'Cyan Technology eCOG1X',
'EM_ECOG1X' : 'Cyan Technology eCOG1X',
'EM_MAXQ30' : 'Dallas Semiconductor MAXQ30',
'EM_XIMO16' : 'New Japan Radio (NJR) 16-bit',
'EM_MANIK' : 'M2000 Reconfigurable RISC',
'EM_CRAYNV2' : 'Cray Inc. NV2',
'EM_RX' : 'Renesas RX',
'EM_METAG' : 'Imagination Technologies META',
'EM_MCST_ELBRUS' : 'MCST Elbrus',
'EM_ECOG16' : 'Cyan Technology eCOG16',
'EM_CR16' : 'National Semiconductor CompactRISC CR16 16-bit',
'EM_ETPU' : 'Freescale',
'EM_SLE9X' : 'Infineon Technologies SLE9X',
'EM_L10M' : 'Intel L10M',
'EM_K10M' : 'Intel K10M',
'EM_AARCH64' : 'AArch64',
'EM_AVR32' : 'Atmel 32-bit',
'EM_STM8' : 'STMicroeletronics STM8 8-bit',
'EM_TILE64' : 'Tilera TILE64',
'EM_TILEPRO' : 'Tilera TILEPro',
'EM_MICROBLAZE' : 'Xilinx MicroBlaze 32-bit RISC',
'EM_CUDA' : 'NVIDIA CUDA',
'EM_TILEGX' : 'Tilera TILE-Gx',
'EM_CLOUDSHIELD' : 'CloudShield',
'EM_COREA_1ST' : 'KIPO-KAIST Core-A 1st generation',
'EM_COREA_2ND' : 'KIPO-KAIST Core-A 2nd generation',
'EM_ARC_COMPACT2' : 'Synopsys ARCompact V2',
'EM_OPEN8' : 'Open8 8-bit RISC',
'EM_RL78' : 'Renesas RL78',
'EM_VIDEOCORE5' : 'Broadcom VideoCore V',
'EM_78KOR' : 'Renesas 78KOR',
'EM_56800EX' : 'Freescale 56800EX',
'EM_BA1' : 'Beyond BA1',
'EM_BA2' : 'Beyond BA2',
'EM_XCORE' : 'XMOS xCORE',
'EM_MCHP_PIC' : 'Microchip 8-bit PIC',
'EM_INTEL205' : 'Reserved by Intel',
'EM_INTEL206' : 'Reserved by Intel',
'EM_INTEL207' : 'Reserved by Intel',
'EM_INTEL208' : 'Reserved by Intel',
'EM_INTEL209' : 'Reserved by Intel',
'EM_KM32' : 'KM211 KM32 32-bit',
'EM_KMX32' : 'KM211 KMX32 32-bit',
'EM_KMX16' : 'KM211 KMX16 16-bit',
'EM_KMX8' : 'KM211 KMX8 8-bit',
'EM_KVARC' : 'KM211 KVARC',
'EM_CDP' : 'Paneve CDP',
'EM_COGE' : 'Cognitive',
'EM_COOL' : 'Bluechip Systems CoolEngine',
'EM_NORC' : 'Nanoradio Optimized RISC',
'EM_CSR_KALIMBA' : 'CSR Kalimba',
'EM_Z80' : 'Zilog Z80',
'EM_VISIUM' : 'VISIUMcore',
'EM_FT32' : 'FTDI Chip FT32 32-bit RISC',
'EM_MOXIE' : 'Moxie',
'EM_AMDGPU' : 'AMD GPU',
'EM_RISCV' : 'RISC-V',
'EM_BPF' : 'Linux BPF - in-kernel virtual machine',
'EM_CSKY' : 'C-SKY',
'EM_LOONGARCH' : 'LoongArch',
'EM_FRV' : 'Fujitsu FR-V'
}
return architectures.get(self['e_machine'], '<unknown>')
def get_shstrndx(self):
""" Find the string table section index for the section header table
"""
# From https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html:
# If the section name string table section index is greater than or
# equal to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX
# (0xffff) and the actual index of the section name string table section
# is contained in the sh_link field of the section header at index 0.
if self['e_shstrndx'] != SHN_INDICES.SHN_XINDEX:
return self['e_shstrndx']
else:
return self._get_section_header(0)['sh_link']
#-------------------------------- PRIVATE --------------------------------#
def __getitem__(self, name):
""" Implement dict-like access to header entries
"""
return self.header[name]
def _identify_file(self):
""" Verify the ELF file and identify its class and endianness.
"""
# Note: this code reads the stream directly, without using ELFStructs,
# since we don't yet know its exact format. ELF was designed to be
# read like this - its e_ident field is word-size and endian agnostic.
self.stream.seek(0)
magic = self.stream.read(4)
elf_assert(magic == b'\x7fELF', 'Magic number does not match')
ei_class = self.stream.read(1)
if ei_class == b'\x01':
self.elfclass = 32
elif ei_class == b'\x02':
self.elfclass = 64
else:
raise ELFError('Invalid EI_CLASS %s' % repr(ei_class))
ei_data = self.stream.read(1)
if ei_data == b'\x01':
self.little_endian = True
elif ei_data == b'\x02':
self.little_endian = False
else:
raise ELFError('Invalid EI_DATA %s' % repr(ei_data))
def _section_offset(self, n):
""" Compute the offset of section #n in the file
"""
return self['e_shoff'] + n * self['e_shentsize']
def _segment_offset(self, n):
""" Compute the offset of segment #n in the file
"""
return self['e_phoff'] + n * self['e_phentsize']
def _make_segment(self, segment_header):
""" Create a Segment object of the appropriate type
"""
segtype = segment_header['p_type']
if segtype == 'PT_INTERP':
return InterpSegment(segment_header, self.stream)
elif segtype == 'PT_DYNAMIC':
return DynamicSegment(segment_header, self.stream, self)
elif segtype == 'PT_NOTE':
return NoteSegment(segment_header, self.stream, self)
else:
return Segment(segment_header, self.stream)
def _get_section_header(self, n):
""" Find the header of section #n, parse it and return the struct
"""
stream_pos = self._section_offset(n)
if stream_pos > self.stream_len:
return None
return struct_parse(
self.structs.Elf_Shdr,
self.stream,
stream_pos=stream_pos)
def _get_section_name(self, section_header):
""" Given a section header, find this section's name in the file's
string table
"""
if self._section_header_stringtable is None:
raise ELFParseError("String Table not found")
name_offset = section_header['sh_name']
return self._section_header_stringtable.get_string(name_offset)
def _make_section(self, section_header):
""" Create a section object of the appropriate type
"""
name = self._get_section_name(section_header)
sectype = section_header['sh_type']
if sectype == 'SHT_STRTAB':
return StringTableSection(section_header, name, self)
elif sectype == 'SHT_NULL':
return NullSection(section_header, name, self)
elif sectype in ('SHT_SYMTAB', 'SHT_DYNSYM', 'SHT_SUNW_LDYNSYM'):
return self._make_symbol_table_section(section_header, name)
elif sectype == 'SHT_SYMTAB_SHNDX':
return self._make_symbol_table_index_section(section_header, name)
elif sectype == 'SHT_SUNW_syminfo':
return self._make_sunwsyminfo_table_section(section_header, name)
elif sectype == 'SHT_GNU_verneed':
return self._make_gnu_verneed_section(section_header, name)
elif sectype == 'SHT_GNU_verdef':
return self._make_gnu_verdef_section(section_header, name)
elif sectype == 'SHT_GNU_versym':
return self._make_gnu_versym_section(section_header, name)
elif sectype in ('SHT_REL', 'SHT_RELA'):
return RelocationSection(section_header, name, self)
elif sectype == 'SHT_DYNAMIC':
return DynamicSection(section_header, name, self)
elif sectype == 'SHT_NOTE':
return NoteSection(section_header, name, self)
elif sectype == 'SHT_PROGBITS' and name == '.stab':
return StabSection(section_header, name, self)
elif sectype == 'SHT_ARM_ATTRIBUTES':
return ARMAttributesSection(section_header, name, self)
elif sectype == 'SHT_RISCV_ATTRIBUTES':
return RISCVAttributesSection(section_header, name, self)
elif sectype == 'SHT_HASH':
return self._make_elf_hash_section(section_header, name)
elif sectype == 'SHT_GNU_HASH':
return self._make_gnu_hash_section(section_header, name)
elif sectype == 'SHT_RELR':
return RelrRelocationSection(section_header, name, self)
else:
return Section(section_header, name, self)
def _make_section_name_map(self):
self._section_name_map = {}
for i, sec in enumerate(self.iter_sections()):
self._section_name_map[sec.name] = i
def _make_symbol_table_section(self, section_header, name):
""" Create a SymbolTableSection
"""
linked_strtab_index = section_header['sh_link']
strtab_section = self.get_section(linked_strtab_index)
return SymbolTableSection(
section_header, name,
elffile=self,
stringtable=strtab_section)
def _make_symbol_table_index_section(self, section_header, name):
""" Create a SymbolTableIndexSection object
"""
linked_symtab_index = section_header['sh_link']
return SymbolTableIndexSection(
section_header, name, elffile=self,
symboltable=linked_symtab_index)
def _make_sunwsyminfo_table_section(self, section_header, name):
""" Create a SUNWSyminfoTableSection
"""
linked_strtab_index = section_header['sh_link']
strtab_section = self.get_section(linked_strtab_index)
return SUNWSyminfoTableSection(
section_header, name,
elffile=self,
symboltable=strtab_section)
def _make_gnu_verneed_section(self, section_header, name):
""" Create a GNUVerNeedSection
"""
linked_strtab_index = section_header['sh_link']
strtab_section = self.get_section(linked_strtab_index)
return GNUVerNeedSection(
section_header, name,
elffile=self,
stringtable=strtab_section)
def _make_gnu_verdef_section(self, section_header, name):
""" Create a GNUVerDefSection
"""
linked_strtab_index = section_header['sh_link']
strtab_section = self.get_section(linked_strtab_index)
return GNUVerDefSection(
section_header, name,
elffile=self,
stringtable=strtab_section)
def _make_gnu_versym_section(self, section_header, name):
""" Create a GNUVerSymSection
"""
linked_strtab_index = section_header['sh_link']
strtab_section = self.get_section(linked_strtab_index)
return GNUVerSymSection(
section_header, name,
elffile=self,
symboltable=strtab_section)
def _make_elf_hash_section(self, section_header, name):
linked_symtab_index = section_header['sh_link']
symtab_section = self.get_section(linked_symtab_index)
return ELFHashSection(
section_header, name, self, symtab_section
)
def _make_gnu_hash_section(self, section_header, name):
linked_symtab_index = section_header['sh_link']
symtab_section = self.get_section(linked_symtab_index)
return GNUHashSection(
section_header, name, self, symtab_section
)
def _get_segment_header(self, n):
""" Find the header of segment #n, parse it and return the struct
"""
return struct_parse(
self.structs.Elf_Phdr,
self.stream,
stream_pos=self._segment_offset(n))
def _get_section_header_stringtable(self):
""" Get the string table section corresponding to the section header
table.
"""
stringtable_section_num = self.get_shstrndx()
stringtable_section_header = self._get_section_header(stringtable_section_num)
if stringtable_section_header is None:
return None
return StringTableSection(
header=stringtable_section_header,
name='',
elffile=self)
def _parse_elf_header(self):
""" Parses the ELF file header and assigns the result to attributes
of this object.
"""
return struct_parse(self.structs.Elf_Ehdr, self.stream, stream_pos=0)
def _read_dwarf_section(self, section, relocate_dwarf_sections):
""" Read the contents of a DWARF section from the stream and return a
DebugSectionDescriptor. Apply relocations if asked to.
"""
# The section data is read into a new stream, for processing
section_stream = BytesIO()
section_stream.write(section.data())
if relocate_dwarf_sections:
reloc_handler = RelocationHandler(self)
reloc_section = reloc_handler.find_relocations_for_section(section)
if reloc_section is not None:
reloc_handler.apply_section_relocations(
section_stream, reloc_section)
return DebugSectionDescriptor(
stream=section_stream,
name=section.name,
global_offset=section['sh_offset'],
size=section.data_size,
address=section['sh_addr'])
@staticmethod
def _decompress_dwarf_section(section):
""" Returns the uncompressed contents of the provided DWARF section.
"""
# TODO: support other compression formats from readelf.c
assert section.size > 12, 'Unsupported compression format.'
section.stream.seek(0)
# According to readelf.c the content should contain "ZLIB"
# followed by the uncompressed section size - 8 bytes in
# big-endian order
compression_type = section.stream.read(4)
assert compression_type == b'ZLIB', \
'Invalid compression type: %r' % (compression_type)
uncompressed_size = struct.unpack('>Q', section.stream.read(8))[0]
decompressor = zlib.decompressobj()
uncompressed_stream = BytesIO()
while True:
chunk = section.stream.read(PAGESIZE)
if not chunk:
break
uncompressed_stream.write(decompressor.decompress(chunk))
uncompressed_stream.write(decompressor.flush())
uncompressed_stream.seek(0, io.SEEK_END)
size = uncompressed_stream.tell()
assert uncompressed_size == size, \
'Wrong uncompressed size: expected %r, but got %r' % (
uncompressed_size, size,
)
return section._replace(stream=uncompressed_stream, size=size)
def close(self):
self.stream.close()
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()