Openwrt/package/rtc-rv5c386a/src/rtc.c
Florian Fainelli 798d675786 add RTC RV5C386A package
SVN-Revision: 17073
2009-08-01 11:09:02 +00:00

594 lines
12 KiB
C

/*
* Real Time Clock driver for WL-HDD
*
* Copyright (C) 2007 Andreas Engel
*
* Hacked together mostly by copying the relevant code parts from:
* drivers/i2c/i2c-bcm5365.c
* drivers/i2c/i2c-algo-bit.c
* drivers/char/rtc.c
*
* Note 1:
* This module uses the standard char device (10,135), while the Asus module
* rtcdrv.o uses (12,0). So, both can coexist which might be handy during
* development (but see the comment in rtc_open()).
*
* Note 2:
* You might need to set the clock once after loading the driver the first
* time because the driver switches the chip into 24h mode if it is running
* in 12h mode.
*
* Usage:
* For compatibility reasons with the original asus driver, the time can be
* read and set via the /dev/rtc device entry. The only accepted data format
* is "YYYY:MM:DD:W:HH:MM:SS\n". See OpenWrt wiki for a script which handles
* this format.
*
* In addition, this driver supports the standard ioctl() calls for setting
* and reading the hardware clock, so the ordinary hwclock utility can also
* be used.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* TODO:
* - add a /proc/driver/rtc interface?
* - make the battery failure bit available through the /proc interface?
*
* $Id: rtc.c 7 2007-05-25 19:37:01Z ae $
*/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include "gpio.h"
#define RTC_IS_OPEN 0x01 /* Means /dev/rtc is in use. */
/* Can be changed via a module parameter. */
static int rtc_debug = 0;
static unsigned long rtc_status = 0; /* Bitmapped status byte. */
static spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
/* These settings are platform dependents. */
unsigned int sda_index = 0;
unsigned int scl_index = 0;
#define I2C_READ_MASK 1
#define I2C_WRITE_MASK 0
#define I2C_ACK 1
#define I2C_NAK 0
#define RTC_EPOCH 1900
#define RTC_I2C_ADDRESS (0x32 << 1)
#define RTC_24HOUR_MODE_MASK 0x20
#define RTC_PM_MASK 0x20
#define RTC_VDET_MASK 0x40
#define RTC_Y2K_MASK 0x80
/*
* Delay in microseconds for generating the pulses on the I2C bus. We use
* a rather conservative setting here. See datasheet of the RTC chip.
*/
#define ADAP_DELAY 50
/* Avoid spurious compiler warnings. */
#define UNUSED __attribute__((unused))
MODULE_AUTHOR("Andreas Engel");
MODULE_LICENSE("GPL");
/* Test stolen from switch-adm.c. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,52)
module_param(rtc_debug, int, 0);
#else
MODULE_PARM(rtc_debug, "i");
#endif
static inline void sdalo(void)
{
gpio_direction_output(sda_index, 1);
udelay(ADAP_DELAY);
}
static inline void sdahi(void)
{
gpio_direction_input(sda_index);
udelay(ADAP_DELAY);
}
static inline void scllo(void)
{
gpio_direction_output(scl_index, 1);
udelay(ADAP_DELAY);
}
static inline int getscl(void)
{
return (gpio_get_value(scl_index));
}
static inline int getsda(void)
{
return (gpio_get_value(sda_index));
}
/*
* We shouldn't simply set the SCL pin to high. Like SDA, the SCL line is
* bidirectional too. According to the I2C spec, the slave is allowed to
* pull down the SCL line to slow down the clock, so we need to check this.
* Generally, we'd need a timeout here, but in our case, we just check the
* line, assuming the RTC chip behaves well.
*/
static int sclhi(void)
{
gpio_direction_input(scl_index);
udelay(ADAP_DELAY);
if (!getscl()) {
printk(KERN_ERR "SCL pin should be low\n");
return -ETIMEDOUT;
}
return 0;
}
static void i2c_start(void)
{
sdalo();
scllo();
}
static void i2c_stop(void)
{
sdalo();
sclhi();
sdahi();
}
static int i2c_outb(int c)
{
int i;
int ack;
/* assert: scl is low */
for (i = 7; i >= 0; i--) {
if (c & ( 1 << i )) {
sdahi();
} else {
sdalo();
}
if (sclhi() < 0) { /* timed out */
sdahi(); /* we don't want to block the net */
return -ETIMEDOUT;
};
scllo();
}
sdahi();
if (sclhi() < 0) {
return -ETIMEDOUT;
};
/* read ack: SDA should be pulled down by slave */
ack = getsda() == 0; /* ack: sda is pulled low ->success. */
scllo();
if (rtc_debug)
printk(KERN_DEBUG "i2c_outb(0x%02x) -> %s\n",
c, ack ? "ACK": "NAK");
return ack; /* return 1 if device acked */
/* assert: scl is low (sda undef) */
}
static int i2c_inb(int ack)
{
int i;
unsigned int indata = 0;
/* assert: scl is low */
sdahi();
for (i = 0; i < 8; i++) {
if (sclhi() < 0) {
return -ETIMEDOUT;
};
indata *= 2;
if (getsda())
indata |= 0x01;
scllo();
}
if (ack) {
sdalo();
} else {
sdahi();
}
if (sclhi() < 0) {
sdahi();
return -ETIMEDOUT;
}
scllo();
sdahi();
if (rtc_debug)
printk(KERN_DEBUG "i2c_inb() -> 0x%02x\n", indata);
/* assert: scl is low */
return indata & 0xff;
}
static void i2c_init(void)
{
/* no gpio_control for EXTIF */
// gpio_control(sda_mask | scl_mask, 0);
gpio_set_value(sda_index, 0);
gpio_set_value(scl_index, 0);
sdahi();
sclhi();
}
static int rtc_open(UNUSED struct inode *inode, UNUSED struct file *filp)
{
spin_lock_irq(&rtc_lock);
if (rtc_status & RTC_IS_OPEN) {
spin_unlock_irq(&rtc_lock);
return -EBUSY;
}
rtc_status |= RTC_IS_OPEN;
/*
* The following call is only necessary if we use both this driver and
* the proprietary one from asus at the same time (which, b.t.w. only
* makes sense during development). Otherwise, each access via the asus
* driver will make access via this driver impossible.
*/
i2c_init();
spin_unlock_irq(&rtc_lock);
return 0;
}
static int rtc_release(UNUSED struct inode *inode, UNUSED struct file *filp)
{
/* No need for locking here. */
rtc_status &= ~RTC_IS_OPEN;
return 0;
}
static int from_bcd(int bcdnum)
{
int fac, num = 0;
for (fac = 1; bcdnum; fac *= 10) {
num += (bcdnum % 16) * fac;
bcdnum /= 16;
}
return num;
}
static int to_bcd(int decnum)
{
int fac, num = 0;
for (fac = 1; decnum; fac *= 16) {
num += (decnum % 10) * fac;
decnum /= 10;
}
return num;
}
static void get_rtc_time(struct rtc_time *rtc_tm)
{
int cr2;
/*
* Read date and time from the RTC. We use read method (3).
*/
i2c_start();
i2c_outb(RTC_I2C_ADDRESS | I2C_READ_MASK);
cr2 = i2c_inb(I2C_ACK);
rtc_tm->tm_sec = i2c_inb(I2C_ACK);
rtc_tm->tm_min = i2c_inb(I2C_ACK);
rtc_tm->tm_hour = i2c_inb(I2C_ACK);
rtc_tm->tm_wday = i2c_inb(I2C_ACK);
rtc_tm->tm_mday = i2c_inb(I2C_ACK);
rtc_tm->tm_mon = i2c_inb(I2C_ACK);
rtc_tm->tm_year = i2c_inb(I2C_NAK);
i2c_stop();
if (cr2 & RTC_VDET_MASK) {
printk(KERN_WARNING "***RTC BATTERY FAILURE***\n");
}
/* Handle century bit */
if (rtc_tm->tm_mon & RTC_Y2K_MASK) {
rtc_tm->tm_mon &= ~RTC_Y2K_MASK;
rtc_tm->tm_year += 0x100;
}
rtc_tm->tm_sec = from_bcd(rtc_tm->tm_sec);
rtc_tm->tm_min = from_bcd(rtc_tm->tm_min);
rtc_tm->tm_hour = from_bcd(rtc_tm->tm_hour);
rtc_tm->tm_mday = from_bcd(rtc_tm->tm_mday);
rtc_tm->tm_mon = from_bcd(rtc_tm->tm_mon) - 1;
rtc_tm->tm_year = from_bcd(rtc_tm->tm_year);
rtc_tm->tm_isdst = -1; /* DST not known */
}
static void set_rtc_time(struct rtc_time *rtc_tm)
{
rtc_tm->tm_sec = to_bcd(rtc_tm->tm_sec);
rtc_tm->tm_min = to_bcd(rtc_tm->tm_min);
rtc_tm->tm_hour = to_bcd(rtc_tm->tm_hour);
rtc_tm->tm_mday = to_bcd(rtc_tm->tm_mday);
rtc_tm->tm_mon = to_bcd(rtc_tm->tm_mon + 1);
rtc_tm->tm_year = to_bcd(rtc_tm->tm_year);
if (rtc_tm->tm_year >= 0x100) {
rtc_tm->tm_year -= 0x100;
rtc_tm->tm_mon |= RTC_Y2K_MASK;
}
i2c_start();
i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK);
i2c_outb(0x00); /* set starting register to 0 (=seconds) */
i2c_outb(rtc_tm->tm_sec);
i2c_outb(rtc_tm->tm_min);
i2c_outb(rtc_tm->tm_hour);
i2c_outb(rtc_tm->tm_wday);
i2c_outb(rtc_tm->tm_mday);
i2c_outb(rtc_tm->tm_mon);
i2c_outb(rtc_tm->tm_year);
i2c_stop();
}
static ssize_t rtc_write(UNUSED struct file *filp, const char *buf,
size_t count, loff_t *ppos)
{
struct rtc_time rtc_tm;
char buffer[23];
char *p;
if (!capable(CAP_SYS_TIME))
return -EACCES;
if (ppos != &filp->f_pos)
return -ESPIPE;
/*
* For simplicity, the only acceptable format is:
* YYYY:MM:DD:W:HH:MM:SS\n
*/
if (count != 22)
goto err_out;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
buffer[sizeof(buffer)-1] = '\0';
p = &buffer[0];
rtc_tm.tm_year = simple_strtoul(p, &p, 10);
if (*p++ != ':') goto err_out;
rtc_tm.tm_mon = simple_strtoul(p, &p, 10) - 1;
if (*p++ != ':') goto err_out;
rtc_tm.tm_mday = simple_strtoul(p, &p, 10);
if (*p++ != ':') goto err_out;
rtc_tm.tm_wday = simple_strtoul(p, &p, 10);
if (*p++ != ':') goto err_out;
rtc_tm.tm_hour = simple_strtoul(p, &p, 10);
if (*p++ != ':') goto err_out;
rtc_tm.tm_min = simple_strtoul(p, &p, 10);
if (*p++ != ':') goto err_out;
rtc_tm.tm_sec = simple_strtoul(p, &p, 10);
if (*p != '\n') goto err_out;
rtc_tm.tm_year -= RTC_EPOCH;
set_rtc_time(&rtc_tm);
*ppos += count;
return count;
err_out:
printk(KERN_ERR "invalid format: use YYYY:MM:DD:W:HH:MM:SS\\n\n");
return -EINVAL;
}
static ssize_t rtc_read(UNUSED struct file *filp, char *buf, size_t count,
loff_t *ppos)
{
char wbuf[23];
struct rtc_time tm;
ssize_t len;
if (count == 0 || *ppos != 0)
return 0;
get_rtc_time(&tm);
len = sprintf(wbuf, "%04d:%02d:%02d:%d:%02d:%02d:%02d\n",
tm.tm_year + RTC_EPOCH,
tm.tm_mon + 1,
tm.tm_mday,
tm.tm_wday,
tm.tm_hour,
tm.tm_min,
tm.tm_sec);
if (len > (ssize_t)count)
len = count;
if (copy_to_user(buf, wbuf, len))
return -EFAULT;
*ppos += len;
return len;
}
static int rtc_ioctl(UNUSED struct inode *inode, UNUSED struct file *filp,
unsigned int cmd, unsigned long arg)
{
struct rtc_time rtc_tm;
switch (cmd) {
case RTC_RD_TIME:
memset(&rtc_tm, 0, sizeof(struct rtc_time));
get_rtc_time(&rtc_tm);
if (copy_to_user((void *)arg, &rtc_tm, sizeof(rtc_tm)))
return -EFAULT;
break;
case RTC_SET_TIME:
if (!capable(CAP_SYS_TIME))
return -EACCES;
if (copy_from_user(&rtc_tm, (struct rtc_time *)arg,
sizeof(struct rtc_time)))
return -EFAULT;
set_rtc_time(&rtc_tm);
break;
default:
return -ENOTTY;
}
return 0;
}
static struct file_operations rtc_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = rtc_read,
.write = rtc_write,
.ioctl = rtc_ioctl,
.open = rtc_open,
.release = rtc_release,
};
static struct miscdevice rtc_dev = {
.minor = RTC_MINOR,
.name = "rtc",
.fops = &rtc_fops,
};
/* Savagely ripped from diag.c. */
extern char *nvram_get(char *str);
#define getvar(str) (nvram_get(str)?:"")
static inline int startswith (char *source, char *cmp)
{ return !strncmp(source,cmp,strlen(cmp)); }
static void platform_detect(void)
{
char *buf;
/* Based on "model_no". */
if ((buf = nvram_get("model_no"))) {
if (startswith(buf,"WL700")) { /* WL700* */
sda_index = 2;
scl_index = 5;
return;
}
}
if (startswith(getvar("hardware_version"), "WL300-")) {
/* Either WL-300g or WL-HDD, do more extensive checks */
if ((simple_strtoul(getvar("et0phyaddr"), NULL, 0) == 0) &&
(simple_strtoul(getvar("et1phyaddr"), NULL, 0) == 1)) {
sda_index = 4;
scl_index = 5;
return;
}
}
/* not found */
}
static int __init rtc_init(void)
{
int cr1;
platform_detect();
if (sda_index == scl_index) {
printk(KERN_ERR "RTC-RV5C386A: unrecognized platform!\n");
return -ENODEV;
}
i2c_init();
/*
* Switch RTC to 24h mode
*/
i2c_start();
i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK);
i2c_outb(0xE4); /* start at address 0xE, transmission mode 4 */
cr1 = i2c_inb(I2C_NAK);
i2c_stop();
if ((cr1 & RTC_24HOUR_MODE_MASK) == 0) {
/* RTC is running in 12h mode */
printk(KERN_INFO "rtc.o: switching to 24h mode\n");
i2c_start();
i2c_outb(RTC_I2C_ADDRESS | I2C_WRITE_MASK);
i2c_outb(0xE0);
i2c_outb(cr1 | RTC_24HOUR_MODE_MASK);
i2c_stop();
}
misc_register(&rtc_dev);
printk(KERN_INFO "RV5C386A Real Time Clock Driver loaded\n");
return 0;
}
static void __exit rtc_exit (void)
{
misc_deregister(&rtc_dev);
printk(KERN_INFO "Successfully removed RTC RV5C386A driver\n");
}
module_init(rtc_init);
module_exit(rtc_exit);
/*
* Local Variables:
* indent-tabs-mode:t
* c-basic-offset:8
* End:
*/