Openwrt/target/linux/ramips/files/drivers/usb/host/mtk-phy-7621.c
John Crispin a75b692557 ralink: add xhci driver
Signed-off-by: John Crispin <blogic@openwrt.org>

SVN-Revision: 39328
2014-01-19 17:27:13 +00:00

446 lines
16 KiB
C

#include "mtk-phy.h"
#ifdef CONFIG_PROJECT_7621
#include "mtk-phy-7621.h"
//not used on SoC
PHY_INT32 phy_init(struct u3phy_info *info){
return PHY_TRUE;
}
//not used on SoC
PHY_INT32 phy_change_pipe_phase(struct u3phy_info *info, PHY_INT32 phy_drv, PHY_INT32 pipe_phase){
return PHY_TRUE;
}
//--------------------------------------------------------
// Function : fgEyeScanHelper_CheckPtInRegion()
// Description : Check if the test point is in a rectangle region.
// If it is in the rectangle, also check if this point
// is on the multiple of deltaX and deltaY.
// Parameter : strucScanRegion * prEye - the region
// BYTE bX
// BYTE bY
// Return : BYTE - TRUE : This point needs to be tested
// FALSE: This point will be omitted
// Note : First check within the rectangle.
// Secondly, use modulous to check if the point will be tested.
//--------------------------------------------------------
static PHY_INT8 fgEyeScanHelper_CheckPtInRegion(struct strucScanRegion * prEye, PHY_INT8 bX, PHY_INT8 bY)
{
PHY_INT8 fgValid = true;
/// Be careful, the axis origin is on the TOP-LEFT corner.
/// Therefore the top-left point has the minimum X and Y
/// Botton-right point is the maximum X and Y
if ( (prEye->bX_tl <= bX) && (bX <= prEye->bX_br)
&& (prEye->bY_tl <= bY) && (bY <= prEye->bX_br))
{
// With the region, now check whether or not the input test point is
// on the multiples of X and Y
// Do not have to worry about negative value, because we have already
// check the input bX, and bY is within the region.
if ( ((bX - prEye->bX_tl) % (prEye->bDeltaX))
|| ((bY - prEye->bY_tl) % (prEye->bDeltaY)) )
{
// if the division will have remainder, that means
// the input test point is on the multiples of X and Y
fgValid = false;
}
else
{
}
}
else
{
fgValid = false;
}
return fgValid;
}
//--------------------------------------------------------
// Function : EyeScanHelper_RunTest()
// Description : Enable the test, and wait til it is completed
// Parameter : None
// Return : None
// Note : None
//--------------------------------------------------------
static void EyeScanHelper_RunTest(struct u3phy_info *info)
{
DRV_UDELAY(100);
// Disable the test
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_CNT_EN_OFST, RG_SSUSB_EQ_EYE_CNT_EN, 0); //RG_SSUSB_RX_EYE_CNT_EN = 0
DRV_UDELAY(100);
// Run the test
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_CNT_EN_OFST, RG_SSUSB_EQ_EYE_CNT_EN, 1); //RG_SSUSB_RX_EYE_CNT_EN = 1
DRV_UDELAY(100);
// Wait til it's done
//RGS_SSUSB_RX_EYE_CNT_RDY
while(!U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon5)
, RGS_SSUSB_EQ_EYE_CNT_RDY_OFST, RGS_SSUSB_EQ_EYE_CNT_RDY));
}
//--------------------------------------------------------
// Function : fgEyeScanHelper_CalNextPoint()
// Description : Calcualte the test point for the measurement
// Parameter : None
// Return : BOOL - TRUE : the next point is within the
// boundaryof HW limit
// FALSE: the next point is out of the HW limit
// Note : The next point is obtained by calculating
// from the bottom left of the region rectangle
// and then scanning up until it reaches the upper
// limit. At this time, the x will increment, and
// start scanning downwards until the y hits the
// zero.
//--------------------------------------------------------
static PHY_INT8 fgEyeScanHelper_CalNextPoint(void)
{
if ( ((_bYcurr == MAX_Y) && (_eScanDir == SCAN_DN))
|| ((_bYcurr == MIN_Y) && (_eScanDir == SCAN_UP))
)
{
/// Reaches the limit of Y axis
/// Increment X
_bXcurr++;
_fgXChged = true;
_eScanDir = (_eScanDir == SCAN_UP) ? SCAN_DN : SCAN_UP;
if (_bXcurr > MAX_X)
{
return false;
}
}
else
{
_bYcurr = (_eScanDir == SCAN_DN) ? _bYcurr + 1 : _bYcurr - 1;
_fgXChged = false;
}
return PHY_TRUE;
}
PHY_INT32 eyescan_init(struct u3phy_info *info){
//initial PHY setting
U3PhyWriteField32(((PHY_UINT32)&info->u3phya_regs->rega)
, RG_SSUSB_CDR_EPEN_OFST, RG_SSUSB_CDR_EPEN, 1);
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->phyd_mix3)
, RG_SSUSB_FORCE_CDR_PI_PWD_OFST, RG_SSUSB_FORCE_CDR_PI_PWD, 1);
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_PI_CAL_EN_SEL_OFST, RG_SSUSB_RX_PI_CAL_EN_SEL, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_SEL = 1
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 1
return PHY_TRUE;
}
PHY_INT32 phy_eyescan(struct u3phy_info *info, PHY_INT32 x_t1, PHY_INT32 y_t1, PHY_INT32 x_br, PHY_INT32 y_br, PHY_INT32 delta_x, PHY_INT32 delta_y
, PHY_INT32 eye_cnt, PHY_INT32 num_cnt, PHY_INT32 PI_cal_en, PHY_INT32 num_ignore_cnt){
PHY_INT32 cOfst = 0;
PHY_UINT8 bIdxX = 0;
PHY_UINT8 bIdxY = 0;
//PHY_INT8 bCnt = 0;
PHY_UINT8 bIdxCycCnt = 0;
PHY_INT8 fgValid;
PHY_INT8 cX;
PHY_INT8 cY;
PHY_UINT8 bExtendCnt;
PHY_INT8 isContinue;
//PHY_INT8 isBreak;
PHY_UINT32 wErr0 = 0, wErr1 = 0;
//PHY_UINT32 temp;
PHY_UINT32 pwErrCnt0[CYCLE_COUNT_MAX][ERRCNT_MAX][ERRCNT_MAX];
PHY_UINT32 pwErrCnt1[CYCLE_COUNT_MAX][ERRCNT_MAX][ERRCNT_MAX];
_rEye1.bX_tl = x_t1;
_rEye1.bY_tl = y_t1;
_rEye1.bX_br = x_br;
_rEye1.bY_br = y_br;
_rEye1.bDeltaX = delta_x;
_rEye1.bDeltaY = delta_y;
_rEye2.bX_tl = x_t1;
_rEye2.bY_tl = y_t1;
_rEye2.bX_br = x_br;
_rEye2.bY_br = y_br;
_rEye2.bDeltaX = delta_x;
_rEye2.bDeltaY = delta_y;
_rTestCycle.wEyeCnt = eye_cnt;
_rTestCycle.bNumOfEyeCnt = num_cnt;
_rTestCycle.bNumOfIgnoreCnt = num_ignore_cnt;
_rTestCycle.bPICalEn = PI_cal_en;
_bXcurr = 0;
_bYcurr = 0;
_eScanDir = SCAN_DN;
_fgXChged = false;
printk("x_t1: %x, y_t1: %x, x_br: %x, y_br: %x, delta_x: %x, delta_y: %x, \
eye_cnt: %x, num_cnt: %x, PI_cal_en: %x, num_ignore_cnt: %x\n", \
x_t1, y_t1, x_br, y_br, delta_x, delta_y, eye_cnt, num_cnt, PI_cal_en, num_ignore_cnt);
//force SIGDET to OFF
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_SIGDET_EN_SEL_OFST, RG_SSUSB_RX_SIGDET_EN_SEL, 1); //RG_SSUSB_RX_SIGDET_SEL = 1
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_SIGDET_EN_OFST, RG_SSUSB_RX_SIGDET_EN, 0); //RG_SSUSB_RX_SIGDET_EN = 0
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye1)
, RG_SSUSB_EQ_SIGDET_OFST, RG_SSUSB_EQ_SIGDET, 0); //RG_SSUSB_RX_SIGDET = 0
// RX_TRI_DET_EN to Disable
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq3)
, RG_SSUSB_EQ_TRI_DET_EN_OFST, RG_SSUSB_EQ_TRI_DET_EN, 0); //RG_SSUSB_RX_TRI_DET_EN = 0
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_MON_EN_OFST, RG_SSUSB_EQ_EYE_MON_EN, 1); //RG_SSUSB_EYE_MON_EN = 1
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, 0); //RG_SSUSB_RX_EYE_XOFFSET = 0
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, 0); //RG_SSUSB_RX_EYE0_Y = 0
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, 0); //RG_SSUSB_RX_EYE1_Y = 0
if (PI_cal_en){
// PI Calibration
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_PI_CAL_EN_SEL_OFST, RG_SSUSB_RX_PI_CAL_EN_SEL, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_SEL = 1
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 0); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 0
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 1); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 1
DRV_UDELAY(20);
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_bank2_regs->b2_phyd_misc0)
, RG_SSUSB_RX_PI_CAL_EN_OFST, RG_SSUSB_RX_PI_CAL_EN, 0); //RG_SSUSB_RX_PI_CAL_MANUAL_EN = 0
_bPIResult = U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon5)
, RGS_SSUSB_EQ_PILPO_OFST, RGS_SSUSB_EQ_PILPO); //read RGS_SSUSB_RX_PILPO
printk(KERN_ERR "PI result: %d\n", _bPIResult);
}
// Read Initial DAC
// Set CYCLE
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye3)
,RG_SSUSB_EQ_EYE_CNT_OFST, RG_SSUSB_EQ_EYE_CNT, eye_cnt); //RG_SSUSB_RX_EYE_CNT
// Eye Monitor Feature
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye1)
, RG_SSUSB_EQ_EYE_MASK_OFST, RG_SSUSB_EQ_EYE_MASK, 0x3ff); //RG_SSUSB_RX_EYE_MASK = 0x3ff
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_MON_EN_OFST, RG_SSUSB_EQ_EYE_MON_EN, 1); //RG_SSUSB_EYE_MON_EN = 1
// Move X,Y to the top-left corner
for (cOfst = 0; cOfst >= -64; cOfst--)
{
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
,RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, cOfst); //RG_SSUSB_RX_EYE_XOFFSET
}
for (cOfst = 0; cOfst < 64; cOfst++)
{
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, cOfst); //RG_SSUSB_RX_EYE0_Y
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, cOfst); //RG_SSUSB_RX_EYE1_Y
}
//ClearErrorResult
for(bIdxCycCnt = 0; bIdxCycCnt < CYCLE_COUNT_MAX; bIdxCycCnt++){
for(bIdxX = 0; bIdxX < ERRCNT_MAX; bIdxX++)
{
for(bIdxY = 0; bIdxY < ERRCNT_MAX; bIdxY++){
pwErrCnt0[bIdxCycCnt][bIdxX][bIdxY] = 0;
pwErrCnt1[bIdxCycCnt][bIdxX][bIdxY] = 0;
}
}
}
isContinue = true;
while(isContinue){
//printk(KERN_ERR "_bXcurr: %d, _bYcurr: %d\n", _bXcurr, _bYcurr);
// The point is within the boundary, then let's check if it is within
// the testing region.
// The point is only test-able if one of the eye region
// includes this point.
fgValid = fgEyeScanHelper_CheckPtInRegion(&_rEye1, _bXcurr, _bYcurr)
|| fgEyeScanHelper_CheckPtInRegion(&_rEye2, _bXcurr, _bYcurr);
// Translate bX and bY to 2's complement from where the origin was on the
// top left corner.
// 0x40 and 0x3F needs a bit of thinking!!!! >"<
cX = (_bXcurr ^ 0x40);
cY = (_bYcurr ^ 0x3F);
// Set X if necessary
if (_fgXChged == true)
{
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, cX); //RG_SSUSB_RX_EYE_XOFFSET
}
// Set Y
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, cY); //RG_SSUSB_RX_EYE0_Y
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, cY); //RG_SSUSB_RX_EYE1_Y
/// Test this point!
if (fgValid){
for (bExtendCnt = 0; bExtendCnt < num_ignore_cnt; bExtendCnt++)
{
//run test
EyeScanHelper_RunTest(info);
}
for (bExtendCnt = 0; bExtendCnt < num_cnt; bExtendCnt++)
{
EyeScanHelper_RunTest(info);
wErr0 = U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon3)
, RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_0_OFST, RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_0);
wErr1 = U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->phya_rx_mon4)
, RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_1_OFST, RGS_SSUSB_EQ_EYE_MONITOR_ERRCNT_1);
pwErrCnt0[bExtendCnt][_bXcurr][_bYcurr] = wErr0;
pwErrCnt1[bExtendCnt][_bXcurr][_bYcurr] = wErr1;
//EyeScanHelper_GetResult(&_rRes.pwErrCnt0[bCnt], &_rRes.pwErrCnt1[bCnt]);
// printk(KERN_ERR "cnt[%d] cur_x,y [0x%x][0x%x], cX,cY [0x%x][0x%x], ErrCnt[%d][%d]\n"
// , bExtendCnt, _bXcurr, _bYcurr, cX, cY, pwErrCnt0[bExtendCnt][_bXcurr][_bYcurr], pwErrCnt1[bExtendCnt][_bXcurr][_bYcurr]);
}
//printk(KERN_ERR "cur_x,y [0x%x][0x%x], cX,cY [0x%x][0x%x], ErrCnt[%d][%d]\n", _bXcurr, _bYcurr, cX, cY, pwErrCnt0[0][_bXcurr][_bYcurr], pwErrCnt1[0][_bXcurr][_bYcurr]);
}
else{
}
if (fgEyeScanHelper_CalNextPoint() == false){
#if 0
printk(KERN_ERR "Xcurr [0x%x] Ycurr [0x%x]\n", _bXcurr, _bYcurr);
printk(KERN_ERR "XcurrREG [0x%x] YcurrREG [0x%x]\n", cX, cY);
#endif
printk(KERN_ERR "end of eye scan\n");
isContinue = false;
}
}
printk(KERN_ERR "CurX [0x%x] CurY [0x%x]\n"
, U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET)
, U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y));
// Move X,Y to the top-left corner
for (cOfst = 63; cOfst >= 0; cOfst--)
{
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET, cOfst); //RG_SSUSB_RX_EYE_XOFFSET
}
for (cOfst = 63; cOfst >= 0; cOfst--)
{
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y, cOfst);
U3PhyWriteField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0)
, RG_SSUSB_EQ_EYE1_Y_OFST, RG_SSUSB_EQ_EYE1_Y, cOfst);
}
printk(KERN_ERR "CurX [0x%x] CurY [0x%x]\n"
, U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE_XOFFSET_OFST, RG_SSUSB_EQ_EYE_XOFFSET)
, U3PhyReadField32(((PHY_UINT32)&info->u3phyd_regs->eq_eye0), RG_SSUSB_EQ_EYE0_Y_OFST, RG_SSUSB_EQ_EYE0_Y));
printk(KERN_ERR "PI result: %d\n", _bPIResult);
printk(KERN_ERR "pwErrCnt0 addr: 0x%x\n", (PHY_UINT32)pwErrCnt0);
printk(KERN_ERR "pwErrCnt1 addr: 0x%x\n", (PHY_UINT32)pwErrCnt1);
return PHY_TRUE;
}
//not used on SoC
PHY_INT32 u2_save_cur_en(struct u3phy_info *info){
return PHY_TRUE;
}
//not used on SoC
PHY_INT32 u2_save_cur_re(struct u3phy_info *info){
return PHY_TRUE;
}
PHY_INT32 u2_slew_rate_calibration(struct u3phy_info *info){
PHY_INT32 i=0;
//PHY_INT32 j=0;
//PHY_INT8 u1SrCalVal = 0;
//PHY_INT8 u1Reg_addr_HSTX_SRCAL_EN;
PHY_INT32 fgRet = 0;
PHY_INT32 u4FmOut = 0;
PHY_INT32 u4Tmp = 0;
//PHY_INT32 temp;
// => RG_USB20_HSTX_SRCAL_EN = 1
// enable HS TX SR calibration
U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
, RG_USB20_HSTX_SRCAL_EN_OFST, RG_USB20_HSTX_SRCAL_EN, 0x1);
DRV_MSLEEP(1);
// => RG_FRCK_EN = 1
// Enable free run clock
U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmmonr1)
, RG_FRCK_EN_OFST, RG_FRCK_EN, 1);
// MT6290 HS signal quality patch
// => RG_CYCLECNT = 400
// Setting cyclecnt =400
U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmcr0)
, RG_CYCLECNT_OFST, RG_CYCLECNT, 0x400);
// => RG_FREQDET_EN = 1
// Enable frequency meter
U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmcr0)
, RG_FREQDET_EN_OFST, RG_FREQDET_EN, 0x1);
// wait for FM detection done, set 10ms timeout
for(i=0; i<10; i++){
// => u4FmOut = USB_FM_OUT
// read FM_OUT
u4FmOut = U3PhyReadReg32(((PHY_UINT32)&info->sifslv_fm_regs->fmmonr0));
printk("FM_OUT value: u4FmOut = %d(0x%08X)\n", u4FmOut, u4FmOut);
// check if FM detection done
if (u4FmOut != 0)
{
fgRet = 0;
printk("FM detection done! loop = %d\n", i);
break;
}
fgRet = 1;
DRV_MSLEEP(1);
}
// => RG_FREQDET_EN = 0
// disable frequency meter
U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmcr0)
, RG_FREQDET_EN_OFST, RG_FREQDET_EN, 0);
// => RG_FRCK_EN = 0
// disable free run clock
U3PhyWriteField32(((PHY_UINT32)&info->sifslv_fm_regs->fmmonr1)
, RG_FRCK_EN_OFST, RG_FRCK_EN, 0);
// => RG_USB20_HSTX_SRCAL_EN = 0
// disable HS TX SR calibration
U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
, RG_USB20_HSTX_SRCAL_EN_OFST, RG_USB20_HSTX_SRCAL_EN, 0);
DRV_MSLEEP(1);
if(u4FmOut == 0){
U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
, RG_USB20_HSTX_SRCTRL_OFST, RG_USB20_HSTX_SRCTRL, 0x4);
fgRet = 1;
}
else{
// set reg = (1024/FM_OUT) * 25 * 0.028 (round to the nearest digits)
u4Tmp = (((1024 * 25 * U2_SR_COEF_7621) / u4FmOut) + 500) / 1000;
printk("SR calibration value u1SrCalVal = %d\n", (PHY_UINT8)u4Tmp);
U3PhyWriteField32(((PHY_UINT32)&info->u2phy_regs->u2phyacr0)
, RG_USB20_HSTX_SRCTRL_OFST, RG_USB20_HSTX_SRCTRL, u4Tmp);
}
return fgRet;
}
#endif