Openwrt/package/boot/uboot-oxnas/files/board/ox820/ddr.c
John Crispin c05048b0bb add uboot-oxnas
This adds support for the oxnas target in U-Boot 2014.04
History can be found at https://github.com/kref/u-boot-oxnas up to 2013.10
changes from 2013.10 to 2014.04 can be followed at
https://gitorious.org/openwrt-oxnas

Signed-off-by: Daniel Golle <daniel@makrotopia.org>

SVN-Revision: 43389
2014-11-26 09:00:17 +00:00

478 lines
14 KiB
C
Executable File

/*******************************************************************
*
* File: ddr_oxsemi.c
*
* Description: Declarations for DDR routines and data objects
*
* Author: Julien Margetts
*
* Copyright: Oxford Semiconductor Ltd, 2009
*/
#include <common.h>
#include <asm/arch/clock.h>
#include "ddr.h"
typedef unsigned int UINT;
// DDR TIMING PARAMETERS
typedef struct {
unsigned int holdoff_cmd_A;
unsigned int holdoff_cmd_ARW;
unsigned int holdoff_cmd_N;
unsigned int holdoff_cmd_LM;
unsigned int holdoff_cmd_R;
unsigned int holdoff_cmd_W;
unsigned int holdoff_cmd_PC;
unsigned int holdoff_cmd_RF;
unsigned int holdoff_bank_R;
unsigned int holdoff_bank_W;
unsigned int holdoff_dir_RW;
unsigned int holdoff_dir_WR;
unsigned int holdoff_FAW;
unsigned int latency_CAS;
unsigned int latency_WL;
unsigned int recovery_WR;
unsigned int width_update;
unsigned int odt_offset;
unsigned int odt_drive_all;
unsigned int use_fixed_re;
unsigned int delay_wr_to_re;
unsigned int wr_slave_ratio;
unsigned int rd_slave_ratio0;
unsigned int rd_slave_ratio1;
} T_DDR_TIMING_PARAMETERS;
// DDR CONFIG PARAMETERS
typedef struct {
unsigned int ddr_mode;
unsigned int width;
unsigned int blocs;
unsigned int banks8;
unsigned int rams;
unsigned int asize;
unsigned int speed;
unsigned int cmd_mode_wr_cl_bl;
} T_DDR_CONFIG_PARAMETERS;
//cmd_mode_wr_cl_bl
//when SDR : cmd_mode_wr_cl_bl = 0x80200002 + (latency_CAS_RAM * 16) + (recovery_WR - 1) * 512; -- Sets write rec XX, CL=XX; BL=8
//else cmd_mode_wr_cl_bl = 0x80200003 + (latency_CAS_RAM * 16) + (recovery_WR - 1) * 512; -- Sets write rec XX, CL=XX; BL=8
// cmd_ bank_ dir_ lat_ rec_ width_ odt_ odt_ fix delay ratio
// A F C update offset all re re_to_we w r0 r1
// R L P R R W A A W W
//Timing Parameters A W N M R W C F R W W R W S L R
static const T_DDR_TIMING_PARAMETERS C_TP_DDR2_25E_CL5_1GB = { 4, 5, 0, 2, 4, 4,
5, 51, 23, 24, 9, 11, 18, 5, 4, 6, 3, 2, 0, 1, 2, 75, 56, 56 }; //elida device.
static const T_DDR_TIMING_PARAMETERS C_TP_DDR2_25E_CL5_2GB = { 4, 5, 0, 2, 4, 4,
5, 79, 22, 24, 9, 11, 20, 5, 4, 6, 3, 2, 0, 1, 2, 75, 56, 56 };
static const T_DDR_TIMING_PARAMETERS C_TP_DDR2_25_CL6_1GB = { 4, 5, 0, 2, 4, 4,
4, 51, 22, 26, 10, 12, 18, 6, 5, 6, 3, 2, 0, 1, 2, 75, 56, 56 }; // 400MHz, Speedgrade 25 timings (1Gb parts)
// D B B R A S
// D W L K A S P
//Config Parameters R D C 8 M Z D CMD_MODE
//static const T_DDR_CONFIG_PARAMETERS C_CP_DDR2_25E_CL5 = { 2,16, 1, 0, 1, 32,25,0x80200A53}; // 64 MByte
static const T_DDR_CONFIG_PARAMETERS C_CP_DDR2_25E_CL5 = { 2, 16, 1, 1, 1, 64,
25, 0x80200A53 }; // 128 MByte
static const T_DDR_CONFIG_PARAMETERS C_CP_DDR2_25_CL6 = { 2, 16, 1, 1, 1, 128,
25, 0x80200A63 }; // 256 MByte
static void ddr_phy_poll_until_locked(void)
{
volatile UINT reg_tmp = 0;
volatile UINT locked = 0;
//Extra read to put in delay before starting to poll...
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2; // read
//POLL C_DDR_PHY2_REG register until clock and flock
//!!! Ideally have a timeout on this.
while (locked == 0) {
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2; // read
//locked when bits 30 and 31 are set
if (reg_tmp & 0xC0000000) {
locked = 1;
}
}
}
static void ddr_poll_until_not_busy(void)
{
volatile UINT reg_tmp = 0;
volatile UINT busy = 1;
//Extra read to put in delay before starting to poll...
reg_tmp = *(volatile UINT *) C_DDR_STAT_REG; // read
//POLL DDR_STAT register until no longer busy
//!!! Ideally have a timeout on this.
while (busy == 1) {
reg_tmp = *(volatile UINT *) C_DDR_STAT_REG; // read
//when bit 31 is clear - core is no longer busy
if ((reg_tmp & 0x80000000) == 0x00000000) {
busy = 0;
}
}
}
static void ddr_issue_command(int commmand)
{
*(volatile UINT *) C_DDR_CMD_REG = commmand;
ddr_poll_until_not_busy();
}
static void ddr_timing_initialisation(
const T_DDR_TIMING_PARAMETERS *ddr_timing_parameters)
{
volatile UINT reg_tmp = 0;
/* update the DDR controller registers for timing parameters */
reg_tmp = (ddr_timing_parameters->holdoff_cmd_A << 0);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_ARW << 4);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_N << 8);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_LM << 12);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_R << 16);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_W << 20);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_cmd_PC << 24);
*(volatile UINT *) C_DDR_REG_TIMING0 = reg_tmp;
reg_tmp = (ddr_timing_parameters->holdoff_cmd_RF << 0);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_bank_R << 8);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_bank_W << 16);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_dir_RW << 24);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_dir_WR << 28);
*(volatile UINT *) C_DDR_REG_TIMING1 = reg_tmp;
reg_tmp = (ddr_timing_parameters->latency_CAS << 0);
reg_tmp = reg_tmp + (ddr_timing_parameters->latency_WL << 4);
reg_tmp = reg_tmp + (ddr_timing_parameters->holdoff_FAW << 8);
reg_tmp = reg_tmp + (ddr_timing_parameters->width_update << 16);
reg_tmp = reg_tmp + (ddr_timing_parameters->odt_offset << 21);
reg_tmp = reg_tmp + (ddr_timing_parameters->odt_drive_all << 24);
*(volatile UINT *) C_DDR_REG_TIMING2 = reg_tmp;
/* Program the timing parameters in the PHY too */
reg_tmp = (ddr_timing_parameters->use_fixed_re << 16)
| (ddr_timing_parameters->delay_wr_to_re << 8)
| (ddr_timing_parameters->latency_WL << 4)
| (ddr_timing_parameters->latency_CAS << 0);
*(volatile UINT *) C_DDR_REG_PHY_TIMING = reg_tmp;
reg_tmp = ddr_timing_parameters->wr_slave_ratio;
*(volatile UINT *) C_DDR_REG_PHY_WR_RATIO = reg_tmp;
reg_tmp = ddr_timing_parameters->rd_slave_ratio0;
reg_tmp += ddr_timing_parameters->rd_slave_ratio1 << 8;
*(volatile UINT *) C_DDR_REG_PHY_RD_RATIO = reg_tmp;
}
static void ddr_normal_initialisation(
const T_DDR_CONFIG_PARAMETERS *ddr_config_parameters, int mhz)
{
int i;
volatile UINT tmp = 0;
volatile UINT reg_tmp = 0;
volatile UINT emr_cmd = 0;
UINT refresh;
//Total size of memory in Mbits...
tmp = ddr_config_parameters->rams * ddr_config_parameters->asize
* ddr_config_parameters->width;
//Deduce value to program into DDR_CFG register...
switch (tmp) {
case 16:
reg_tmp = 0x00020000 * 1;
break;
case 32:
reg_tmp = 0x00020000 * 2;
break;
case 64:
reg_tmp = 0x00020000 * 3;
break;
case 128:
reg_tmp = 0x00020000 * 4;
break;
case 256:
reg_tmp = 0x00020000 * 5;
break;
case 512:
reg_tmp = 0x00020000 * 6;
break;
case 1024:
reg_tmp = 0x00020000 * 7;
break;
case 2048:
reg_tmp = 0x00020000 * 8;
break;
default:
reg_tmp = 0; //forces sims not to work if badly configured
}
//Memory width
tmp = ddr_config_parameters->rams * ddr_config_parameters->width;
switch (tmp) {
case 8:
reg_tmp = reg_tmp + 0x00400000;
break;
case 16:
reg_tmp = reg_tmp + 0x00200000;
break;
case 32:
reg_tmp = reg_tmp + 0x00000000;
break;
default:
reg_tmp = 0; //forces sims not to work if badly configured
}
//Setup DDR Mode
switch (ddr_config_parameters->ddr_mode) {
case 0:
reg_tmp = reg_tmp + 0x00000000;
break; //SDR
case 1:
reg_tmp = reg_tmp + 0x40000000;
break; //DDR
case 2:
reg_tmp = reg_tmp + 0x80000000;
break; //DDR2
default:
reg_tmp = 0; //forces sims not to work if badly configured
}
//Setup Banks
if (ddr_config_parameters->banks8 == 1) {
reg_tmp = reg_tmp + 0x00800000;
}
//Program DDR_CFG register...
*(volatile UINT *) C_DDR_CFG_REG = reg_tmp;
//Configure PHY0 reg - se_mode is bit 1,
//needs to be 1 for DDR (single_ended drive)
switch (ddr_config_parameters->ddr_mode) {
case 0:
reg_tmp = 2 + (0 << 4);
break; //SDR
case 1:
reg_tmp = 2 + (4 << 4);
break; //DDR
case 2:
reg_tmp = 0 + (4 << 4);
break; //DDR2
default:
reg_tmp = 0;
}
//Program DDR_PHY0 register...
*(volatile UINT *) C_DDR_REG_PHY0 = reg_tmp;
//Read DDR_PHY* registers to exercise paths for vcd
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY3;
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2;
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY1;
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY0;
//Start up sequences - Different dependant on DDR mode
switch (ddr_config_parameters->ddr_mode) {
case 2: //DDR2
//Start-up sequence: follows procedure described in Micron datasheet.
//start up DDR PHY DLL
reg_tmp = 0x00022828; // dll on, start point and inc = h28
*(volatile UINT *) C_DDR_REG_PHY2 = reg_tmp;
reg_tmp = 0x00032828; // start on, dll on, start point and inc = h28
*(volatile UINT *) C_DDR_REG_PHY2 = reg_tmp;
ddr_phy_poll_until_locked();
udelay(200); //200us
//Startup SDRAM...
//!!! Software: CK should be running for 200us before wake-up
ddr_issue_command( C_CMD_WAKE_UP);
ddr_issue_command( C_CMD_NOP);
ddr_issue_command( C_CMD_PRECHARGE_ALL);
ddr_issue_command( C_CMD_DDR2_EMR2);
ddr_issue_command( C_CMD_DDR2_EMR3);
emr_cmd = C_CMD_DDR2_EMR1 + C_CMD_ODT_75 + C_CMD_REDUCED_DRIVE
+ C_CMD_ENABLE_DLL;
ddr_issue_command(emr_cmd);
//Sets CL=3; BL=8 but also reset DLL to trigger a DLL initialisation...
udelay(1); //1us
ddr_issue_command(
ddr_config_parameters->cmd_mode_wr_cl_bl
+ C_CMD_RESET_DLL);
udelay(1); //1us
//!!! Software: Wait 200 CK cycles before...
//for(i=1; i<=2; i++) {
ddr_issue_command(C_CMD_PRECHARGE_ALL);
// !!! Software: Wait here at least 8 CK cycles
//}
//need a wait here to ensure PHY DLL lock before the refresh is issued
udelay(1); //1us
for (i = 1; i <= 2; i++) {
ddr_issue_command( C_CMD_AUTO_REFRESH);
//!!! Software: Wait here at least 8 CK cycles to satify tRFC
udelay(1); //1us
}
//As before but without 'RESET_DLL' bit set...
ddr_issue_command(ddr_config_parameters->cmd_mode_wr_cl_bl);
udelay(1); //1us
// OCD commands
ddr_issue_command(emr_cmd + C_CMD_MODE_DDR2_OCD_DFLT);
ddr_issue_command(emr_cmd + C_CMD_MODE_DDR2_OCD_EXIT);
break;
default:
break; //Do nothing
}
//Enable auto-refresh
// 8192 Refreshes required every 64ms, so maximum refresh period is 7.8125 us
// We have a 400 MHz DDR clock (2.5ns period) so max period is 3125 cycles
// Our core now does 8 refreshes in a go, so we multiply this period by 8
refresh = (64000 * mhz) / 8192; // Refresh period in clocks
reg_tmp = *(volatile UINT *) C_DDR_CFG_REG; // read
#ifdef BURST_REFRESH_ENABLE
reg_tmp |= C_CFG_REFRESH_ENABLE | (refresh * 8);
reg_tmp |= C_CFG_BURST_REFRESH_ENABLE;
#else
reg_tmp |= C_CFG_REFRESH_ENABLE | (refresh * 1);
reg_tmp &= ~C_CFG_BURST_REFRESH_ENABLE;
#endif
*(volatile UINT *) C_DDR_CFG_REG = reg_tmp;
//Verify register contents
reg_tmp = *(volatile UINT *) C_DDR_REG_PHY2; // read
//printf("Warning XXXXXXXXXXXXXXXXXXXXXX - get bad read data from C_DDR_PHY2_REG, though it looks OK on bus XXXXXXXXXXXXXXXXXX");
//TBD Check_data (read_data, dll_reg, "Error: bad C_DDR_PHY2_REG read", tb_pass);
reg_tmp = *(volatile UINT *) C_DDR_CFG_REG; // read
//TBD Check_data (read_data, cfg_reg, "Error: bad DDR_CFG read", tb_pass);
//disable optimised wrapping
if (ddr_config_parameters->ddr_mode == 2) {
reg_tmp = 0xFFFF0000;
*(volatile UINT *) C_DDR_REG_IGNORE = reg_tmp;
}
//enable midbuffer followon
reg_tmp = *(volatile UINT *) C_DDR_ARB_REG; // read
reg_tmp = 0xFFFF0000 | reg_tmp;
*(volatile UINT *) C_DDR_ARB_REG = reg_tmp;
// Enable write behind coherency checking for all clients
reg_tmp = 0xFFFF0000;
*(volatile UINT *) C_DDR_AHB4_REG = reg_tmp;
//Wait for 200 clock cycles for SDRAM DLL to lock...
udelay(1); //1us
}
// Function used to Setup DDR core
void ddr_setup(int mhz)
{
static const T_DDR_TIMING_PARAMETERS *ddr_timing_parameters =
&C_TP_DDR2_25_CL6_1GB;
static const T_DDR_CONFIG_PARAMETERS *ddr_config_parameters =
&C_CP_DDR2_25_CL6;
//Bring core out of Reset
*(volatile UINT *) C_DDR_BLKEN_REG = C_BLKEN_DDR_ON;
//DDR TIMING INITIALISTION
ddr_timing_initialisation(ddr_timing_parameters);
//DDR NORMAL INITIALISATION
ddr_normal_initialisation(ddr_config_parameters, mhz);
// route all writes through one client
*(volatile UINT *) C_DDR_TRANSACTION_ROUTING = (0
<< DDR_ROUTE_CPU0_INSTR_SHIFT)
| (1 << DDR_ROUTE_CPU0_RDDATA_SHIFT)
| (3 << DDR_ROUTE_CPU0_WRDATA_SHIFT)
| (2 << DDR_ROUTE_CPU1_INSTR_SHIFT)
| (3 << DDR_ROUTE_CPU1_RDDATA_SHIFT)
| (3 << DDR_ROUTE_CPU1_WRDATA_SHIFT);
//Bring all clients out of reset
*(volatile UINT *) C_DDR_BLKEN_REG = C_BLKEN_DDR_ON + 0x0000FFFF;
}
void set_ddr_timing(unsigned int w, unsigned int i)
{
unsigned int reg;
unsigned int wnow = 16;
unsigned int inow = 32;
/* reset all timing controls to known value (31) */
writel(DDR_PHY_TIMING_W_RST | DDR_PHY_TIMING_I_RST, DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_W_RST | DDR_PHY_TIMING_I_RST | DDR_PHY_TIMING_CK,
DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_W_RST | DDR_PHY_TIMING_I_RST, DDR_PHY_TIMING);
/* step up or down read delay to the requested value */
while (wnow != w) {
if (wnow < w) {
reg = DDR_PHY_TIMING_INC;
wnow++;
} else {
reg = 0;
wnow--;
}
writel(DDR_PHY_TIMING_W_CE | reg, DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_CK | DDR_PHY_TIMING_W_CE | reg,
DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_W_CE | reg, DDR_PHY_TIMING);
}
/* now write delay */
while (inow != i) {
if (inow < i) {
reg = DDR_PHY_TIMING_INC;
inow++;
} else {
reg = 0;
inow--;
}
writel(DDR_PHY_TIMING_I_CE | reg, DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_CK | DDR_PHY_TIMING_I_CE | reg,
DDR_PHY_TIMING);
writel(DDR_PHY_TIMING_I_CE | reg, DDR_PHY_TIMING);
}
}
//Function used to Setup SDRAM in DDR/SDR mode
void init_ddr(int mhz)
{
/* start clocks */
enable_clock(SYS_CTRL_CLK_DDRPHY);
enable_clock(SYS_CTRL_CLK_DDR);
enable_clock(SYS_CTRL_CLK_DDRCK);
/* bring phy and core out of reset */
reset_block(SYS_CTRL_RST_DDR_PHY, 0);
reset_block(SYS_CTRL_RST_DDR, 0);
/* DDR runs at half the speed of the CPU */
ddr_setup(mhz >> 1);
return;
}