Openwrt/target/linux/ar71xx/files/drivers/mtd/nand/ar934x_nfc.c
Gabor Juhos 7815af409a ar71xx: ar934x-nfc: disable subpage write when hardware ECC is used
It is not supported by the controller.

Signed-off-by: Gabor Juhos <juhosg@openwrt.org>

SVN-Revision: 38234
2013-09-27 11:15:34 +00:00

1505 lines
36 KiB
C

/*
* Driver for the built-in NAND controller of the Atheros AR934x SoCs
*
* Copyright (C) 2011-2013 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/platform/ar934x_nfc.h>
#define AR934X_NFC_REG_CMD 0x00
#define AR934X_NFC_REG_CTRL 0x04
#define AR934X_NFC_REG_STATUS 0x08
#define AR934X_NFC_REG_INT_MASK 0x0c
#define AR934X_NFC_REG_INT_STATUS 0x10
#define AR934X_NFC_REG_ECC_CTRL 0x14
#define AR934X_NFC_REG_ECC_OFFSET 0x18
#define AR934X_NFC_REG_ADDR0_0 0x1c
#define AR934X_NFC_REG_ADDR0_1 0x24
#define AR934X_NFC_REG_ADDR1_0 0x20
#define AR934X_NFC_REG_ADDR1_1 0x28
#define AR934X_NFC_REG_SPARE_SIZE 0x30
#define AR934X_NFC_REG_PROTECT 0x38
#define AR934X_NFC_REG_LOOKUP_EN 0x40
#define AR934X_NFC_REG_LOOKUP(_x) (0x44 + (_i) * 4)
#define AR934X_NFC_REG_DMA_ADDR 0x64
#define AR934X_NFC_REG_DMA_COUNT 0x68
#define AR934X_NFC_REG_DMA_CTRL 0x6c
#define AR934X_NFC_REG_MEM_CTRL 0x80
#define AR934X_NFC_REG_DATA_SIZE 0x84
#define AR934X_NFC_REG_READ_STATUS 0x88
#define AR934X_NFC_REG_TIME_SEQ 0x8c
#define AR934X_NFC_REG_TIMINGS_ASYN 0x90
#define AR934X_NFC_REG_TIMINGS_SYN 0x94
#define AR934X_NFC_REG_FIFO_DATA 0x98
#define AR934X_NFC_REG_TIME_MODE 0x9c
#define AR934X_NFC_REG_DMA_ADDR_OFFS 0xa0
#define AR934X_NFC_REG_FIFO_INIT 0xb0
#define AR934X_NFC_REG_GEN_SEQ_CTRL 0xb4
#define AR934X_NFC_CMD_CMD_SEQ_S 0
#define AR934X_NFC_CMD_CMD_SEQ_M 0x3f
#define AR934X_NFC_CMD_SEQ_1C 0x00
#define AR934X_NFC_CMD_SEQ_ERASE 0x0e
#define AR934X_NFC_CMD_SEQ_12 0x0c
#define AR934X_NFC_CMD_SEQ_1C1AXR 0x21
#define AR934X_NFC_CMD_SEQ_S 0x24
#define AR934X_NFC_CMD_SEQ_1C3AXR 0x27
#define AR934X_NFC_CMD_SEQ_1C5A1CXR 0x2a
#define AR934X_NFC_CMD_SEQ_18 0x32
#define AR934X_NFC_CMD_INPUT_SEL_SIU 0
#define AR934X_NFC_CMD_INPUT_SEL_DMA BIT(6)
#define AR934X_NFC_CMD_ADDR_SEL_0 0
#define AR934X_NFC_CMD_ADDR_SEL_1 BIT(7)
#define AR934X_NFC_CMD_CMD0_S 8
#define AR934X_NFC_CMD_CMD0_M 0xff
#define AR934X_NFC_CMD_CMD1_S 16
#define AR934X_NFC_CMD_CMD1_M 0xff
#define AR934X_NFC_CMD_CMD2_S 24
#define AR934X_NFC_CMD_CMD2_M 0xff
#define AR934X_NFC_CTRL_ADDR_CYCLE0_M 0x7
#define AR934X_NFC_CTRL_ADDR_CYCLE0_S 0
#define AR934X_NFC_CTRL_SPARE_EN BIT(3)
#define AR934X_NFC_CTRL_INT_EN BIT(4)
#define AR934X_NFC_CTRL_ECC_EN BIT(5)
#define AR934X_NFC_CTRL_BLOCK_SIZE_S 6
#define AR934X_NFC_CTRL_BLOCK_SIZE_M 0x3
#define AR934X_NFC_CTRL_BLOCK_SIZE_32 0
#define AR934X_NFC_CTRL_BLOCK_SIZE_64 1
#define AR934X_NFC_CTRL_BLOCK_SIZE_128 2
#define AR934X_NFC_CTRL_BLOCK_SIZE_256 3
#define AR934X_NFC_CTRL_PAGE_SIZE_S 8
#define AR934X_NFC_CTRL_PAGE_SIZE_M 0x7
#define AR934X_NFC_CTRL_PAGE_SIZE_256 0
#define AR934X_NFC_CTRL_PAGE_SIZE_512 1
#define AR934X_NFC_CTRL_PAGE_SIZE_1024 2
#define AR934X_NFC_CTRL_PAGE_SIZE_2048 3
#define AR934X_NFC_CTRL_PAGE_SIZE_4096 4
#define AR934X_NFC_CTRL_PAGE_SIZE_8192 5
#define AR934X_NFC_CTRL_PAGE_SIZE_16384 6
#define AR934X_NFC_CTRL_CUSTOM_SIZE_EN BIT(11)
#define AR934X_NFC_CTRL_IO_WIDTH_8BITS 0
#define AR934X_NFC_CTRL_IO_WIDTH_16BITS BIT(12)
#define AR934X_NFC_CTRL_LOOKUP_EN BIT(13)
#define AR934X_NFC_CTRL_PROT_EN BIT(14)
#define AR934X_NFC_CTRL_WORK_MODE_ASYNC 0
#define AR934X_NFC_CTRL_WORK_MODE_SYNC BIT(15)
#define AR934X_NFC_CTRL_ADDR0_AUTO_INC BIT(16)
#define AR934X_NFC_CTRL_ADDR1_AUTO_INC BIT(17)
#define AR934X_NFC_CTRL_ADDR_CYCLE1_M 0x7
#define AR934X_NFC_CTRL_ADDR_CYCLE1_S 18
#define AR934X_NFC_CTRL_SMALL_PAGE BIT(21)
#define AR934X_NFC_DMA_CTRL_DMA_START BIT(7)
#define AR934X_NFC_DMA_CTRL_DMA_DIR_WRITE 0
#define AR934X_NFC_DMA_CTRL_DMA_DIR_READ BIT(6)
#define AR934X_NFC_DMA_CTRL_DMA_MODE_SG BIT(5)
#define AR934X_NFC_DMA_CTRL_DMA_BURST_S 2
#define AR934X_NFC_DMA_CTRL_DMA_BURST_0 0
#define AR934X_NFC_DMA_CTRL_DMA_BURST_1 1
#define AR934X_NFC_DMA_CTRL_DMA_BURST_2 2
#define AR934X_NFC_DMA_CTRL_DMA_BURST_3 3
#define AR934X_NFC_DMA_CTRL_DMA_BURST_4 4
#define AR934X_NFC_DMA_CTRL_DMA_BURST_5 5
#define AR934X_NFC_DMA_CTRL_ERR_FLAG BIT(1)
#define AR934X_NFC_DMA_CTRL_DMA_READY BIT(0)
#define AR934X_NFC_INT_DEV_RDY(_x) BIT(4 + (_x))
#define AR934X_NFC_INT_CMD_END BIT(1)
#define AR934X_NFC_ECC_CTRL_ERR_THRES_S 8
#define AR934X_NFC_ECC_CTRL_ERR_THRES_M 0x1f
#define AR934X_NFC_ECC_CTRL_ECC_CAP_S 5
#define AR934X_NFC_ECC_CTRL_ECC_CAP_M 0x7
#define AR934X_NFC_ECC_CTRL_ECC_CAP_2 0
#define AR934X_NFC_ECC_CTRL_ECC_CAP_4 1
#define AR934X_NFC_ECC_CTRL_ECC_CAP_6 2
#define AR934X_NFC_ECC_CTRL_ECC_CAP_8 3
#define AR934X_NFC_ECC_CTRL_ECC_CAP_10 4
#define AR934X_NFC_ECC_CTRL_ECC_CAP_12 5
#define AR934X_NFC_ECC_CTRL_ECC_CAP_14 6
#define AR934X_NFC_ECC_CTRL_ECC_CAP_16 7
#define AR934X_NFC_ECC_CTRL_ERR_OVER BIT(2)
#define AR934X_NFC_ECC_CTRL_ERR_UNCORRECT BIT(1)
#define AR934X_NFC_ECC_CTRL_ERR_CORRECT BIT(0)
#define AR934X_NFC_ECC_OFFS_OFSET_M 0xffff
/* default timing values */
#define AR934X_NFC_TIME_SEQ_DEFAULT 0x7fff
#define AR934X_NFC_TIMINGS_ASYN_DEFAULT 0x22
#define AR934X_NFC_TIMINGS_SYN_DEFAULT 0xf
#define AR934X_NFC_ID_BUF_SIZE 8
#define AR934X_NFC_DEV_READY_TIMEOUT 25 /* msecs */
#define AR934X_NFC_DMA_READY_TIMEOUT 25 /* msecs */
#define AR934X_NFC_DONE_TIMEOUT 1000
#define AR934X_NFC_DMA_RETRIES 20
#define AR934X_NFC_USE_IRQ true
#define AR934X_NFC_IRQ_MASK AR934X_NFC_INT_DEV_RDY(0)
#define AR934X_NFC_GENSEQ_SMALL_PAGE_READ 0x30043
#undef AR934X_NFC_DEBUG_DATA
#undef AR934X_NFC_DEBUG
struct ar934x_nfc;
static inline __attribute__ ((format (printf, 2, 3)))
void _nfc_dbg(struct ar934x_nfc *nfc, const char *fmt, ...)
{
}
#ifdef AR934X_NFC_DEBUG
#define nfc_dbg(_nfc, fmt, ...) \
dev_info((_nfc)->parent, fmt, ##__VA_ARGS__)
#else
#define nfc_dbg(_nfc, fmt, ...) \
_nfc_dbg((_nfc), fmt, ##__VA_ARGS__)
#endif /* AR934X_NFC_DEBUG */
#ifdef AR934X_NFC_DEBUG_DATA
static void
nfc_debug_data(const char *label, void *data, int len)
{
print_hex_dump(KERN_WARNING, label, DUMP_PREFIX_OFFSET, 16, 1,
data, len, 0);
}
#else
static inline void
nfc_debug_data(const char *label, void *data, int len) {}
#endif /* AR934X_NFC_DEBUG_DATA */
struct ar934x_nfc {
struct mtd_info mtd;
struct nand_chip nand_chip;
struct device *parent;
void __iomem *base;
void (*select_chip)(int chip_no);
bool swap_dma;
int irq;
wait_queue_head_t irq_waitq;
bool spurious_irq_expected;
u32 irq_status;
u32 ctrl_reg;
u32 ecc_ctrl_reg;
u32 ecc_offset_reg;
u32 ecc_thres;
u32 ecc_oob_pos;
bool small_page;
unsigned int addr_count0;
unsigned int addr_count1;
u8 *buf;
dma_addr_t buf_dma;
unsigned int buf_size;
int buf_index;
bool read_id;
int erase1_page_addr;
int rndout_page_addr;
int rndout_read_cmd;
int seqin_page_addr;
int seqin_column;
int seqin_read_cmd;
};
static void ar934x_nfc_restart(struct ar934x_nfc *nfc);
static inline bool
is_all_ff(u8 *buf, int len)
{
while (len--)
if (buf[len] != 0xff)
return false;
return true;
}
static inline void
ar934x_nfc_wr(struct ar934x_nfc *nfc, unsigned reg, u32 val)
{
__raw_writel(val, nfc->base + reg);
}
static inline u32
ar934x_nfc_rr(struct ar934x_nfc *nfc, unsigned reg)
{
return __raw_readl(nfc->base + reg);
}
static inline struct ar934x_nfc_platform_data *
ar934x_nfc_get_platform_data(struct ar934x_nfc *nfc)
{
return nfc->parent->platform_data;
}
static inline struct
ar934x_nfc *mtd_to_ar934x_nfc(struct mtd_info *mtd)
{
return container_of(mtd, struct ar934x_nfc, mtd);
}
static inline bool ar934x_nfc_use_irq(struct ar934x_nfc *nfc)
{
return AR934X_NFC_USE_IRQ;
}
static inline void ar934x_nfc_write_cmd_reg(struct ar934x_nfc *nfc, u32 cmd_reg)
{
wmb();
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CMD, cmd_reg);
/* flush write */
ar934x_nfc_rr(nfc, AR934X_NFC_REG_CMD);
}
static bool
__ar934x_nfc_dev_ready(struct ar934x_nfc *nfc)
{
u32 status;
status = ar934x_nfc_rr(nfc, AR934X_NFC_REG_STATUS);
return (status & 0xff) == 0xff;
}
static inline bool
__ar934x_nfc_is_dma_ready(struct ar934x_nfc *nfc)
{
u32 status;
status = ar934x_nfc_rr(nfc, AR934X_NFC_REG_DMA_CTRL);
return (status & AR934X_NFC_DMA_CTRL_DMA_READY) != 0;
}
static int
ar934x_nfc_wait_dev_ready(struct ar934x_nfc *nfc)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(AR934X_NFC_DEV_READY_TIMEOUT);
do {
if (__ar934x_nfc_dev_ready(nfc))
return 0;
} while time_before(jiffies, timeout);
nfc_dbg(nfc, "timeout waiting for device ready, status:%08x int:%08x\n",
ar934x_nfc_rr(nfc, AR934X_NFC_REG_STATUS),
ar934x_nfc_rr(nfc, AR934X_NFC_REG_INT_STATUS));
return -ETIMEDOUT;
}
static int
ar934x_nfc_wait_dma_ready(struct ar934x_nfc *nfc)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(AR934X_NFC_DMA_READY_TIMEOUT);
do {
if (__ar934x_nfc_is_dma_ready(nfc))
return 0;
} while time_before(jiffies, timeout);
nfc_dbg(nfc, "timeout waiting for DMA ready, dma_ctrl:%08x\n",
ar934x_nfc_rr(nfc, AR934X_NFC_REG_DMA_CTRL));
return -ETIMEDOUT;
}
static int
ar934x_nfc_wait_irq(struct ar934x_nfc *nfc)
{
long timeout;
int ret;
timeout = wait_event_timeout(nfc->irq_waitq,
(nfc->irq_status & AR934X_NFC_IRQ_MASK) != 0,
msecs_to_jiffies(AR934X_NFC_DEV_READY_TIMEOUT));
ret = 0;
if (!timeout) {
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_MASK, 0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_STATUS, 0);
/* flush write */
ar934x_nfc_rr(nfc, AR934X_NFC_REG_INT_STATUS);
nfc_dbg(nfc,
"timeout waiting for interrupt, status:%08x\n",
nfc->irq_status);
ret = -ETIMEDOUT;
}
nfc->irq_status = 0;
return ret;
}
static int
ar934x_nfc_wait_done(struct ar934x_nfc *nfc)
{
int ret;
if (ar934x_nfc_use_irq(nfc))
ret = ar934x_nfc_wait_irq(nfc);
else
ret = ar934x_nfc_wait_dev_ready(nfc);
if (ret)
return ret;
return ar934x_nfc_wait_dma_ready(nfc);
}
static int
ar934x_nfc_alloc_buf(struct ar934x_nfc *nfc, unsigned size)
{
nfc->buf = dma_alloc_coherent(nfc->parent, size,
&nfc->buf_dma, GFP_KERNEL);
if (nfc->buf == NULL) {
dev_err(nfc->parent, "no memory for DMA buffer\n");
return -ENOMEM;
}
nfc->buf_size = size;
nfc_dbg(nfc, "buf:%p size:%u\n", nfc->buf, nfc->buf_size);
return 0;
}
static void
ar934x_nfc_free_buf(struct ar934x_nfc *nfc)
{
dma_free_coherent(nfc->parent, nfc->buf_size, nfc->buf, nfc->buf_dma);
}
static void
ar934x_nfc_get_addr(struct ar934x_nfc *nfc, int column, int page_addr,
u32 *addr0, u32 *addr1)
{
u32 a0, a1;
a0 = 0;
a1 = 0;
if (column == -1) {
/* ERASE1 */
a0 = (page_addr & 0xffff) << 16;
a1 = (page_addr >> 16) & 0xf;
} else if (page_addr != -1) {
/* SEQIN, READ0, etc.. */
/* TODO: handle 16bit bus width */
if (nfc->small_page) {
a0 = column & 0xff;
a0 |= (page_addr & 0xff) << 8;
a0 |= ((page_addr >> 8) & 0xff) << 16;
a0 |= ((page_addr >> 16) & 0xff) << 24;
} else {
a0 = column & 0x0FFF;
a0 |= (page_addr & 0xffff) << 16;
if (nfc->addr_count0 > 4)
a1 = (page_addr >> 16) & 0xf;
}
}
*addr0 = a0;
*addr1 = a1;
}
static void
ar934x_nfc_send_cmd(struct ar934x_nfc *nfc, unsigned command)
{
u32 cmd_reg;
cmd_reg = AR934X_NFC_CMD_INPUT_SEL_SIU | AR934X_NFC_CMD_ADDR_SEL_0 |
AR934X_NFC_CMD_SEQ_1C;
cmd_reg |= (command & AR934X_NFC_CMD_CMD0_M) << AR934X_NFC_CMD_CMD0_S;
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_STATUS, 0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CTRL, nfc->ctrl_reg);
ar934x_nfc_write_cmd_reg(nfc, cmd_reg);
ar934x_nfc_wait_dev_ready(nfc);
}
static int
ar934x_nfc_do_rw_command(struct ar934x_nfc *nfc, int column, int page_addr,
int len, u32 cmd_reg, u32 ctrl_reg, bool write)
{
u32 addr0, addr1;
u32 dma_ctrl;
int dir;
int err;
int retries = 0;
WARN_ON(len & 3);
if (WARN_ON(len > nfc->buf_size))
dev_err(nfc->parent, "len=%d > buf_size=%d", len, nfc->buf_size);
if (write) {
dma_ctrl = AR934X_NFC_DMA_CTRL_DMA_DIR_WRITE;
dir = DMA_TO_DEVICE;
} else {
dma_ctrl = AR934X_NFC_DMA_CTRL_DMA_DIR_READ;
dir = DMA_FROM_DEVICE;
}
ar934x_nfc_get_addr(nfc, column, page_addr, &addr0, &addr1);
dma_ctrl |= AR934X_NFC_DMA_CTRL_DMA_START |
(AR934X_NFC_DMA_CTRL_DMA_BURST_3 <<
AR934X_NFC_DMA_CTRL_DMA_BURST_S);
cmd_reg |= AR934X_NFC_CMD_INPUT_SEL_DMA | AR934X_NFC_CMD_ADDR_SEL_0;
ctrl_reg |= AR934X_NFC_CTRL_INT_EN;
nfc_dbg(nfc, "%s a0:%08x a1:%08x len:%x cmd:%08x dma:%08x ctrl:%08x\n",
(write) ? "write" : "read",
addr0, addr1, len, cmd_reg, dma_ctrl, ctrl_reg);
retry:
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_STATUS, 0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_ADDR0_0, addr0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_ADDR0_1, addr1);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_DMA_ADDR, nfc->buf_dma);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_DMA_COUNT, len);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_DATA_SIZE, len);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CTRL, ctrl_reg);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_DMA_CTRL, dma_ctrl);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_ECC_CTRL, nfc->ecc_ctrl_reg);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_ECC_OFFSET, nfc->ecc_offset_reg);
if (ar934x_nfc_use_irq(nfc)) {
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_MASK, AR934X_NFC_IRQ_MASK);
/* flush write */
ar934x_nfc_rr(nfc, AR934X_NFC_REG_INT_MASK);
}
ar934x_nfc_write_cmd_reg(nfc, cmd_reg);
err = ar934x_nfc_wait_done(nfc);
if (err) {
dev_dbg(nfc->parent, "%s operation stuck at page %d\n",
(write) ? "write" : "read", page_addr);
ar934x_nfc_restart(nfc);
if (retries++ < AR934X_NFC_DMA_RETRIES)
goto retry;
dev_err(nfc->parent, "%s operation failed on page %d\n",
(write) ? "write" : "read", page_addr);
}
return err;
}
static int
ar934x_nfc_send_readid(struct ar934x_nfc *nfc, unsigned command)
{
u32 cmd_reg;
int err;
nfc_dbg(nfc, "readid, cmd:%02x\n", command);
cmd_reg = AR934X_NFC_CMD_SEQ_1C1AXR;
cmd_reg |= (command & AR934X_NFC_CMD_CMD0_M) << AR934X_NFC_CMD_CMD0_S;
err = ar934x_nfc_do_rw_command(nfc, -1, -1, AR934X_NFC_ID_BUF_SIZE,
cmd_reg, nfc->ctrl_reg, false);
nfc_debug_data("[id] ", nfc->buf, AR934X_NFC_ID_BUF_SIZE);
return err;
}
static int
ar934x_nfc_send_read(struct ar934x_nfc *nfc, unsigned command, int column,
int page_addr, int len)
{
u32 cmd_reg;
int err;
nfc_dbg(nfc, "read, column=%d page=%d len=%d\n",
column, page_addr, len);
cmd_reg = (command & AR934X_NFC_CMD_CMD0_M) << AR934X_NFC_CMD_CMD0_S;
if (nfc->small_page) {
cmd_reg |= AR934X_NFC_CMD_SEQ_18;
} else {
cmd_reg |= NAND_CMD_READSTART << AR934X_NFC_CMD_CMD1_S;
cmd_reg |= AR934X_NFC_CMD_SEQ_1C5A1CXR;
}
err = ar934x_nfc_do_rw_command(nfc, column, page_addr, len,
cmd_reg, nfc->ctrl_reg, false);
nfc_debug_data("[data] ", nfc->buf, len);
return err;
}
static void
ar934x_nfc_send_erase(struct ar934x_nfc *nfc, unsigned command, int column,
int page_addr)
{
u32 addr0, addr1;
u32 ctrl_reg;
u32 cmd_reg;
ar934x_nfc_get_addr(nfc, column, page_addr, &addr0, &addr1);
ctrl_reg = nfc->ctrl_reg;
if (nfc->small_page) {
/* override number of address cycles for the erase command */
ctrl_reg &= ~(AR934X_NFC_CTRL_ADDR_CYCLE0_M <<
AR934X_NFC_CTRL_ADDR_CYCLE0_S);
ctrl_reg &= ~(AR934X_NFC_CTRL_ADDR_CYCLE1_M <<
AR934X_NFC_CTRL_ADDR_CYCLE1_S);
ctrl_reg &= ~(AR934X_NFC_CTRL_SMALL_PAGE);
ctrl_reg |= (nfc->addr_count0 + 1) <<
AR934X_NFC_CTRL_ADDR_CYCLE0_S;
}
cmd_reg = NAND_CMD_ERASE1 << AR934X_NFC_CMD_CMD0_S;
cmd_reg |= command << AR934X_NFC_CMD_CMD1_S;
cmd_reg |= AR934X_NFC_CMD_SEQ_ERASE;
nfc_dbg(nfc, "erase page %d, a0:%08x a1:%08x cmd:%08x ctrl:%08x\n",
page_addr, addr0, addr1, cmd_reg, ctrl_reg);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_STATUS, 0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CTRL, ctrl_reg);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_ADDR0_0, addr0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_ADDR0_1, addr1);
ar934x_nfc_write_cmd_reg(nfc, cmd_reg);
ar934x_nfc_wait_dev_ready(nfc);
}
static int
ar934x_nfc_send_write(struct ar934x_nfc *nfc, unsigned command, int column,
int page_addr, int len)
{
u32 cmd_reg;
nfc_dbg(nfc, "write, column=%d page=%d len=%d\n",
column, page_addr, len);
nfc_debug_data("[data] ", nfc->buf, len);
cmd_reg = NAND_CMD_SEQIN << AR934X_NFC_CMD_CMD0_S;
cmd_reg |= command << AR934X_NFC_CMD_CMD1_S;
cmd_reg |= AR934X_NFC_CMD_SEQ_12;
return ar934x_nfc_do_rw_command(nfc, column, page_addr, len,
cmd_reg, nfc->ctrl_reg, true);
}
static void
ar934x_nfc_read_status(struct ar934x_nfc *nfc)
{
u32 cmd_reg;
u32 status;
cmd_reg = NAND_CMD_STATUS << AR934X_NFC_CMD_CMD0_S;
cmd_reg |= AR934X_NFC_CMD_SEQ_S;
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_STATUS, 0);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CTRL, nfc->ctrl_reg);
ar934x_nfc_write_cmd_reg(nfc, cmd_reg);
ar934x_nfc_wait_dev_ready(nfc);
status = ar934x_nfc_rr(nfc, AR934X_NFC_REG_READ_STATUS);
nfc_dbg(nfc, "read status, cmd:%08x status:%02x\n",
cmd_reg, (status & 0xff));
if (nfc->swap_dma)
nfc->buf[0 ^ 3] = status;
else
nfc->buf[0] = status;
}
static void
ar934x_nfc_cmdfunc(struct mtd_info *mtd, unsigned int command, int column,
int page_addr)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
struct nand_chip *nand = mtd->priv;
nfc->read_id = false;
if (command != NAND_CMD_PAGEPROG)
nfc->buf_index = 0;
switch (command) {
case NAND_CMD_RESET:
ar934x_nfc_send_cmd(nfc, command);
break;
case NAND_CMD_READID:
nfc->read_id = true;
ar934x_nfc_send_readid(nfc, command);
break;
case NAND_CMD_READ0:
case NAND_CMD_READ1:
if (nfc->small_page) {
ar934x_nfc_send_read(nfc, command, column, page_addr,
mtd->writesize + mtd->oobsize);
} else {
ar934x_nfc_send_read(nfc, command, 0, page_addr,
mtd->writesize + mtd->oobsize);
nfc->buf_index = column;
nfc->rndout_page_addr = page_addr;
nfc->rndout_read_cmd = command;
}
break;
case NAND_CMD_READOOB:
if (nfc->small_page)
ar934x_nfc_send_read(nfc, NAND_CMD_READOOB,
column, page_addr,
mtd->oobsize);
else
ar934x_nfc_send_read(nfc, NAND_CMD_READ0,
mtd->writesize, page_addr,
mtd->oobsize);
break;
case NAND_CMD_RNDOUT:
if (WARN_ON(nfc->small_page))
break;
/* emulate subpage read */
ar934x_nfc_send_read(nfc, nfc->rndout_read_cmd, 0,
nfc->rndout_page_addr,
mtd->writesize + mtd->oobsize);
nfc->buf_index = column;
break;
case NAND_CMD_ERASE1:
nfc->erase1_page_addr = page_addr;
break;
case NAND_CMD_ERASE2:
ar934x_nfc_send_erase(nfc, command, -1, nfc->erase1_page_addr);
break;
case NAND_CMD_STATUS:
ar934x_nfc_read_status(nfc);
break;
case NAND_CMD_SEQIN:
if (nfc->small_page) {
/* output read command */
if (column >= mtd->writesize) {
column -= mtd->writesize;
nfc->seqin_read_cmd = NAND_CMD_READOOB;
} else if (column < 256) {
nfc->seqin_read_cmd = NAND_CMD_READ0;
} else {
column -= 256;
nfc->seqin_read_cmd = NAND_CMD_READ1;
}
} else {
nfc->seqin_read_cmd = NAND_CMD_READ0;
}
nfc->seqin_column = column;
nfc->seqin_page_addr = page_addr;
break;
case NAND_CMD_PAGEPROG:
if (nand->ecc.mode == NAND_ECC_HW) {
/* the data is already written */
break;
}
if (nfc->small_page)
ar934x_nfc_send_cmd(nfc, nfc->seqin_read_cmd);
ar934x_nfc_send_write(nfc, command, nfc->seqin_column,
nfc->seqin_page_addr,
nfc->buf_index);
break;
default:
dev_err(nfc->parent,
"unsupported command: %x, column:%d page_addr=%d\n",
command, column, page_addr);
break;
}
}
static int
ar934x_nfc_dev_ready(struct mtd_info *mtd)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
return __ar934x_nfc_dev_ready(nfc);
}
static void
ar934x_nfc_select_chip(struct mtd_info *mtd, int chip_no)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
if (nfc->select_chip)
nfc->select_chip(chip_no);
}
static u8
ar934x_nfc_read_byte(struct mtd_info *mtd)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
u8 data;
WARN_ON(nfc->buf_index >= nfc->buf_size);
if (nfc->swap_dma || nfc->read_id)
data = nfc->buf[nfc->buf_index ^ 3];
else
data = nfc->buf[nfc->buf_index];
nfc->buf_index++;
return data;
}
static void
ar934x_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
int i;
WARN_ON(nfc->buf_index + len > nfc->buf_size);
if (nfc->swap_dma) {
for (i = 0; i < len; i++) {
nfc->buf[nfc->buf_index ^ 3] = buf[i];
nfc->buf_index++;
}
} else {
for (i = 0; i < len; i++) {
nfc->buf[nfc->buf_index] = buf[i];
nfc->buf_index++;
}
}
}
static void
ar934x_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
int buf_index;
int i;
WARN_ON(nfc->buf_index + len > nfc->buf_size);
buf_index = nfc->buf_index;
if (nfc->swap_dma || nfc->read_id) {
for (i = 0; i < len; i++) {
buf[i] = nfc->buf[buf_index ^ 3];
buf_index++;
}
} else {
for (i = 0; i < len; i++) {
buf[i] = nfc->buf[buf_index];
buf_index++;
}
}
nfc->buf_index = buf_index;
}
static inline void
ar934x_nfc_enable_hwecc(struct ar934x_nfc *nfc)
{
nfc->ctrl_reg |= AR934X_NFC_CTRL_ECC_EN;
nfc->ctrl_reg &= ~AR934X_NFC_CTRL_CUSTOM_SIZE_EN;
}
static inline void
ar934x_nfc_disable_hwecc(struct ar934x_nfc *nfc)
{
nfc->ctrl_reg &= ~AR934X_NFC_CTRL_ECC_EN;
nfc->ctrl_reg |= AR934X_NFC_CTRL_CUSTOM_SIZE_EN;
}
static int
ar934x_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
int err;
nfc_dbg(nfc, "read_oob: page:%d\n", page);
err = ar934x_nfc_send_read(nfc, NAND_CMD_READ0, mtd->writesize, page,
mtd->oobsize);
if (err)
return err;
memcpy(chip->oob_poi, nfc->buf, mtd->oobsize);
return 0;
}
static int
ar934x_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
nfc_dbg(nfc, "write_oob: page:%d\n", page);
memcpy(nfc->buf, chip->oob_poi, mtd->oobsize);
return ar934x_nfc_send_write(nfc, NAND_CMD_PAGEPROG, mtd->writesize,
page, mtd->oobsize);
}
static int
ar934x_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
int len;
int err;
nfc_dbg(nfc, "read_page_raw: page:%d oob:%d\n", page, oob_required);
len = mtd->writesize;
if (oob_required)
len += mtd->oobsize;
err = ar934x_nfc_send_read(nfc, NAND_CMD_READ0, 0, page, len);
if (err)
return err;
memcpy(buf, nfc->buf, mtd->writesize);
if (oob_required)
memcpy(chip->oob_poi, &nfc->buf[mtd->writesize], mtd->oobsize);
return 0;
}
static int
ar934x_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
u32 ecc_ctrl;
int max_bitflips = 0;
bool ecc_failed;
bool ecc_corrected;
int err;
nfc_dbg(nfc, "read_page: page:%d oob:%d\n", page, oob_required);
ar934x_nfc_enable_hwecc(nfc);
err = ar934x_nfc_send_read(nfc, NAND_CMD_READ0, 0, page,
mtd->writesize);
ar934x_nfc_disable_hwecc(nfc);
if (err)
return err;
/* TODO: optimize to avoid memcpy */
memcpy(buf, nfc->buf, mtd->writesize);
/* read the ECC status */
ecc_ctrl = ar934x_nfc_rr(nfc, AR934X_NFC_REG_ECC_CTRL);
ecc_failed = ecc_ctrl & AR934X_NFC_ECC_CTRL_ERR_UNCORRECT;
ecc_corrected = ecc_ctrl & AR934X_NFC_ECC_CTRL_ERR_CORRECT;
if (oob_required || ecc_failed) {
err = ar934x_nfc_send_read(nfc, NAND_CMD_READ0, mtd->writesize,
page, mtd->oobsize);
if (err)
return err;
if (oob_required)
memcpy(chip->oob_poi, nfc->buf, mtd->oobsize);
}
if (ecc_failed) {
/*
* The hardware ECC engine reports uncorrectable errors
* on empty pages. Check the ECC bytes and the data. If
* both contains 0xff bytes only, dont report a failure.
*
* TODO: prebuild a buffer with 0xff bytes and use memcmp
* for better performance?
*/
if (!is_all_ff(&nfc->buf[nfc->ecc_oob_pos], chip->ecc.total) ||
!is_all_ff(buf, mtd->writesize))
mtd->ecc_stats.failed++;
} else if (ecc_corrected) {
/*
* The hardware does not report the exact count of the
* corrected bitflips, use assumptions based on the
* threshold.
*/
if (ecc_ctrl & AR934X_NFC_ECC_CTRL_ERR_OVER) {
/*
* The number of corrected bitflips exceeds the
* threshold. Assume the maximum.
*/
max_bitflips = chip->ecc.strength * chip->ecc.steps;
} else {
max_bitflips = nfc->ecc_thres * chip->ecc.steps;
}
mtd->ecc_stats.corrected += max_bitflips;
}
return max_bitflips;
}
static int
ar934x_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
int page;
int len;
page = nfc->seqin_page_addr;
nfc_dbg(nfc, "write_page_raw: page:%d oob:%d\n", page, oob_required);
memcpy(nfc->buf, buf, mtd->writesize);
len = mtd->writesize;
if (oob_required) {
memcpy(&nfc->buf[mtd->writesize], chip->oob_poi, mtd->oobsize);
len += mtd->oobsize;
}
return ar934x_nfc_send_write(nfc, NAND_CMD_PAGEPROG, 0, page, len);
}
static int
ar934x_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
int page;
int err;
page = nfc->seqin_page_addr;
nfc_dbg(nfc, "write_page: page:%d oob:%d\n", page, oob_required);
/* write OOB first */
if (oob_required &&
!is_all_ff(chip->oob_poi, mtd->oobsize)) {
err = ar934x_nfc_write_oob(mtd, chip, page);
if (err)
return err;
}
/* TODO: optimize to avoid memcopy */
memcpy(nfc->buf, buf, mtd->writesize);
ar934x_nfc_enable_hwecc(nfc);
err = ar934x_nfc_send_write(nfc, NAND_CMD_PAGEPROG, 0, page,
mtd->writesize);
ar934x_nfc_disable_hwecc(nfc);
return err;
}
static void
ar934x_nfc_hw_init(struct ar934x_nfc *nfc)
{
struct ar934x_nfc_platform_data *pdata;
pdata = ar934x_nfc_get_platform_data(nfc);
if (pdata->hw_reset) {
pdata->hw_reset(true);
pdata->hw_reset(false);
}
/*
* setup timings
* TODO: make it configurable via platform data
*/
ar934x_nfc_wr(nfc, AR934X_NFC_REG_TIME_SEQ,
AR934X_NFC_TIME_SEQ_DEFAULT);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_TIMINGS_ASYN,
AR934X_NFC_TIMINGS_ASYN_DEFAULT);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_TIMINGS_SYN,
AR934X_NFC_TIMINGS_SYN_DEFAULT);
/* disable WP on all chips, and select chip 0 */
ar934x_nfc_wr(nfc, AR934X_NFC_REG_MEM_CTRL, 0xff00);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_DMA_ADDR_OFFS, 0);
/* initialize Control register */
nfc->ctrl_reg = AR934X_NFC_CTRL_CUSTOM_SIZE_EN;
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CTRL, nfc->ctrl_reg);
if (nfc->small_page) {
/* Setup generic sequence register for small page reads. */
ar934x_nfc_wr(nfc, AR934X_NFC_REG_GEN_SEQ_CTRL,
AR934X_NFC_GENSEQ_SMALL_PAGE_READ);
}
}
static void
ar934x_nfc_restart(struct ar934x_nfc *nfc)
{
u32 ctrl_reg;
if (nfc->select_chip)
nfc->select_chip(-1);
ctrl_reg = nfc->ctrl_reg;
ar934x_nfc_hw_init(nfc);
nfc->ctrl_reg = ctrl_reg;
if (nfc->select_chip)
nfc->select_chip(0);
ar934x_nfc_send_cmd(nfc, NAND_CMD_RESET);
}
static irqreturn_t
ar934x_nfc_irq_handler(int irq, void *data)
{
struct ar934x_nfc *nfc = data;
u32 status;
status = ar934x_nfc_rr(nfc, AR934X_NFC_REG_INT_STATUS);
ar934x_nfc_wr(nfc, AR934X_NFC_REG_INT_STATUS, 0);
/* flush write */
ar934x_nfc_rr(nfc, AR934X_NFC_REG_INT_STATUS);
status &= ar934x_nfc_rr(nfc, AR934X_NFC_REG_INT_MASK);
if (status) {
nfc_dbg(nfc, "got IRQ, status:%08x\n", status);
nfc->irq_status = status;
nfc->spurious_irq_expected = true;
wake_up(&nfc->irq_waitq);
} else {
if (nfc->spurious_irq_expected) {
nfc->spurious_irq_expected = false;
} else {
dev_warn(nfc->parent, "spurious interrupt\n");
}
}
return IRQ_HANDLED;
}
static int
ar934x_nfc_init_tail(struct mtd_info *mtd)
{
struct ar934x_nfc *nfc = mtd_to_ar934x_nfc(mtd);
struct nand_chip *chip = &nfc->nand_chip;
u32 ctrl;
u32 t;
int err;
switch (mtd->oobsize) {
case 16:
case 64:
case 128:
ar934x_nfc_wr(nfc, AR934X_NFC_REG_SPARE_SIZE, mtd->oobsize);
break;
default:
dev_err(nfc->parent, "unsupported OOB size: %d bytes\n",
mtd->oobsize);
return -ENXIO;
}
ctrl = AR934X_NFC_CTRL_CUSTOM_SIZE_EN;
switch (mtd->erasesize / mtd->writesize) {
case 32:
t = AR934X_NFC_CTRL_BLOCK_SIZE_32;
break;
case 64:
t = AR934X_NFC_CTRL_BLOCK_SIZE_64;
break;
case 128:
t = AR934X_NFC_CTRL_BLOCK_SIZE_128;
break;
case 256:
t = AR934X_NFC_CTRL_BLOCK_SIZE_256;
break;
default:
dev_err(nfc->parent, "unsupported block size: %u\n",
mtd->erasesize / mtd->writesize);
return -ENXIO;
}
ctrl |= t << AR934X_NFC_CTRL_BLOCK_SIZE_S;
switch (mtd->writesize) {
case 256:
nfc->small_page = 1;
t = AR934X_NFC_CTRL_PAGE_SIZE_256;
break;
case 512:
nfc->small_page = 1;
t = AR934X_NFC_CTRL_PAGE_SIZE_512;
break;
case 1024:
t = AR934X_NFC_CTRL_PAGE_SIZE_1024;
break;
case 2048:
t = AR934X_NFC_CTRL_PAGE_SIZE_2048;
break;
case 4096:
t = AR934X_NFC_CTRL_PAGE_SIZE_4096;
break;
case 8192:
t = AR934X_NFC_CTRL_PAGE_SIZE_8192;
break;
case 16384:
t = AR934X_NFC_CTRL_PAGE_SIZE_16384;
break;
default:
dev_err(nfc->parent, "unsupported write size: %d bytes\n",
mtd->writesize);
return -ENXIO;
}
ctrl |= t << AR934X_NFC_CTRL_PAGE_SIZE_S;
if (nfc->small_page) {
ctrl |= AR934X_NFC_CTRL_SMALL_PAGE;
if (chip->chipsize > (32 << 20)) {
nfc->addr_count0 = 4;
nfc->addr_count1 = 3;
} else if (chip->chipsize > (2 << 16)) {
nfc->addr_count0 = 3;
nfc->addr_count1 = 2;
} else {
nfc->addr_count0 = 2;
nfc->addr_count1 = 1;
}
} else {
if (chip->chipsize > (128 << 20)) {
nfc->addr_count0 = 5;
nfc->addr_count1 = 3;
} else if (chip->chipsize > (8 << 16)) {
nfc->addr_count0 = 4;
nfc->addr_count1 = 2;
} else {
nfc->addr_count0 = 3;
nfc->addr_count1 = 1;
}
}
ctrl |= nfc->addr_count0 << AR934X_NFC_CTRL_ADDR_CYCLE0_S;
ctrl |= nfc->addr_count1 << AR934X_NFC_CTRL_ADDR_CYCLE1_S;
nfc->ctrl_reg = ctrl;
ar934x_nfc_wr(nfc, AR934X_NFC_REG_CTRL, nfc->ctrl_reg);
ar934x_nfc_free_buf(nfc);
err = ar934x_nfc_alloc_buf(nfc, mtd->writesize + mtd->oobsize);
return err;
}
static struct nand_ecclayout ar934x_nfc_oob_64_hwecc = {
.eccbytes = 28,
.eccpos = {
20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47,
},
.oobfree = {
{
.offset = 4,
.length = 16,
},
{
.offset = 48,
.length = 16,
},
},
};
static int
ar934x_nfc_setup_hwecc(struct ar934x_nfc *nfc)
{
struct nand_chip *nand = &nfc->nand_chip;
u32 ecc_cap;
u32 ecc_thres;
if (!config_enabled(CONFIG_MTD_NAND_AR934X_HW_ECC)) {
dev_err(nfc->parent, "hardware ECC support is disabled\n");
return -EINVAL;
}
switch (nfc->mtd.writesize) {
case 2048:
/*
* Writing a subpage separately is not supported, because
* the controller only does ECC on full-page accesses.
*/
nand->options = NAND_NO_SUBPAGE_WRITE;
nand->ecc.size = 512;
nand->ecc.bytes = 7;
nand->ecc.strength = 4;
nand->ecc.layout = &ar934x_nfc_oob_64_hwecc;
break;
default:
dev_err(nfc->parent,
"hardware ECC is not available for %d byte pages\n",
nfc->mtd.writesize);
return -EINVAL;
}
BUG_ON(!nand->ecc.layout);
switch (nand->ecc.strength) {
case 4:
ecc_cap = AR934X_NFC_ECC_CTRL_ECC_CAP_4;
ecc_thres = 4;
break;
default:
dev_err(nfc->parent, "unsupported ECC strength %u\n",
nand->ecc.strength);
return -EINVAL;
}
nfc->ecc_thres = ecc_thres;
nfc->ecc_oob_pos = nand->ecc.layout->eccpos[0];
nfc->ecc_ctrl_reg = ecc_cap << AR934X_NFC_ECC_CTRL_ECC_CAP_S;
nfc->ecc_ctrl_reg |= ecc_thres << AR934X_NFC_ECC_CTRL_ERR_THRES_S;
nfc->ecc_offset_reg = nfc->mtd.writesize + nfc->ecc_oob_pos;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.read_page = ar934x_nfc_read_page;
nand->ecc.read_page_raw = ar934x_nfc_read_page_raw;
nand->ecc.write_page = ar934x_nfc_write_page;
nand->ecc.write_page_raw = ar934x_nfc_write_page_raw;
nand->ecc.read_oob = ar934x_nfc_read_oob;
nand->ecc.write_oob = ar934x_nfc_write_oob;
return 0;
}
static int
ar934x_nfc_probe(struct platform_device *pdev)
{
static const char *part_probes[] = { "cmdlinepart", NULL, };
struct ar934x_nfc_platform_data *pdata;
struct ar934x_nfc *nfc;
struct resource *res;
struct mtd_info *mtd;
struct nand_chip *nand;
struct mtd_part_parser_data ppdata;
int ret;
pdata = pdev->dev.platform_data;
if (pdata == NULL) {
dev_err(&pdev->dev, "no platform data defined\n");
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "failed to get I/O memory\n");
return -EINVAL;
}
nfc = devm_kzalloc(&pdev->dev, sizeof(struct ar934x_nfc), GFP_KERNEL);
if (!nfc) {
dev_err(&pdev->dev, "failed to allocate driver data\n");
return -ENOMEM;
}
nfc->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nfc->base)) {
dev_err(&pdev->dev, "failed to remap I/O memory\n");
return PTR_ERR(nfc->base);
}
nfc->irq = platform_get_irq(pdev, 0);
if (nfc->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource specified\n");
return -EINVAL;
}
init_waitqueue_head(&nfc->irq_waitq);
ret = request_irq(nfc->irq, ar934x_nfc_irq_handler, IRQF_DISABLED,
dev_name(&pdev->dev), nfc);
if (ret) {
dev_err(&pdev->dev, "requast_irq failed, err:%d\n", ret);
return ret;
}
nfc->parent = &pdev->dev;
nfc->select_chip = pdata->select_chip;
nfc->swap_dma = pdata->swap_dma;
nand = &nfc->nand_chip;
mtd = &nfc->mtd;
mtd->priv = nand;
mtd->owner = THIS_MODULE;
if (pdata->name)
mtd->name = pdata->name;
else
mtd->name = dev_name(&pdev->dev);
nand->chip_delay = 25;
nand->dev_ready = ar934x_nfc_dev_ready;
nand->cmdfunc = ar934x_nfc_cmdfunc;
nand->read_byte = ar934x_nfc_read_byte;
nand->write_buf = ar934x_nfc_write_buf;
nand->read_buf = ar934x_nfc_read_buf;
nand->select_chip = ar934x_nfc_select_chip;
ret = ar934x_nfc_alloc_buf(nfc, AR934X_NFC_ID_BUF_SIZE);
if (ret)
goto err_free_irq;
platform_set_drvdata(pdev, nfc);
ar934x_nfc_hw_init(nfc);
ret = nand_scan_ident(mtd, 1, NULL);
if (ret) {
dev_err(&pdev->dev, "nand_scan_ident failed, err:%d\n", ret);
goto err_free_buf;
}
ret = ar934x_nfc_init_tail(mtd);
if (ret) {
dev_err(&pdev->dev, "init tail failed, err:%d\n", ret);
goto err_free_buf;
}
if (pdata->scan_fixup) {
ret = pdata->scan_fixup(mtd);
if (ret)
goto err_free_buf;
}
switch (pdata->ecc_mode) {
case AR934X_NFC_ECC_SOFT:
nand->ecc.mode = NAND_ECC_SOFT;
break;
case AR934X_NFC_ECC_HW:
ret = ar934x_nfc_setup_hwecc(nfc);
if (ret)
goto err_free_buf;
break;
default:
dev_err(nfc->parent, "unknown ECC mode %d\n", pdata->ecc_mode);
return -EINVAL;
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(&pdev->dev, "scan tail failed, err:%d\n", ret);
goto err_free_buf;
}
memset(&ppdata, '\0', sizeof(ppdata));
ret = mtd_device_parse_register(mtd, part_probes, &ppdata,
pdata->parts, pdata->nr_parts);
if (ret) {
dev_err(&pdev->dev, "unable to register mtd, err:%d\n", ret);
goto err_free_buf;
}
return 0;
err_free_buf:
ar934x_nfc_free_buf(nfc);
err_free_irq:
free_irq(nfc->irq, nfc);
return ret;
}
static int
ar934x_nfc_remove(struct platform_device *pdev)
{
struct ar934x_nfc *nfc;
nfc = platform_get_drvdata(pdev);
if (nfc) {
nand_release(&nfc->mtd);
ar934x_nfc_free_buf(nfc);
free_irq(nfc->irq, nfc);
}
return 0;
}
static struct platform_driver ar934x_nfc_driver = {
.probe = ar934x_nfc_probe,
.remove = ar934x_nfc_remove,
.driver = {
.name = AR934X_NFC_DRIVER_NAME,
.owner = THIS_MODULE,
},
};
module_platform_driver(ar934x_nfc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_DESCRIPTION("Atheros AR934x NAND Flash Controller driver");
MODULE_ALIAS("platform:" AR934X_NFC_DRIVER_NAME);