Openwrt/target/linux/danube/files/drivers/serial/danube_asc.c

609 lines
14 KiB
C
Raw Normal View History

/*
* Driver for DANUBEASC serial ports
*
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Copyright (C) 2004 Infineon IFAP DC COM CPE
* Copyright (C) 2007 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2007 John Crispin <blogic@openwrt.org>
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/circ_buf.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/irq.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/bitops.h>
#include <asm/danube/danube.h>
#include <asm/danube/danube_irq.h>
#include <asm/danube/danube_serial.h>
#define PORT_DANUBEASC 111
#include <linux/serial_core.h>
#define UART_DUMMY_UER_RX 1
static void danubeasc_tx_chars(struct uart_port *port);
extern void prom_printf(const char * fmt, ...);
static struct uart_port danubeasc_port;
static struct uart_driver danubeasc_reg;
static unsigned int uartclk = 0;
extern unsigned int danube_get_fpi_hz(void);
static void
danubeasc_stop_tx (struct uart_port *port)
{
/* fifo underrun shuts up after firing once */
return;
}
static void
danubeasc_start_tx (struct uart_port *port)
{
unsigned long flags;
local_irq_save(flags);
danubeasc_tx_chars(port);
local_irq_restore(flags);
return;
}
static void
danubeasc_stop_rx (struct uart_port *port)
{
/* clear the RX enable bit */
writel(ASCWHBSTATE_CLRREN, DANUBE_ASC1_WHBSTATE);
}
static void
danubeasc_enable_ms (struct uart_port *port)
{
/* no modem signals */
return;
}
static void
danubeasc_rx_chars (struct uart_port *port)
{
struct tty_struct *tty = port->info->tty;
unsigned int ch = 0, rsr = 0, fifocnt;
fifocnt = readl(DANUBE_ASC1_FSTAT) & ASCFSTAT_RXFFLMASK;
while (fifocnt--)
{
u8 flag = TTY_NORMAL;
ch = readl(DANUBE_ASC1_RBUF);
rsr = (readl(DANUBE_ASC1_STATE) & ASCSTATE_ANY) | UART_DUMMY_UER_RX;
tty_flip_buffer_push(tty);
port->icount.rx++;
/*
* Note that the error handling code is
* out of the main execution path
*/
if (rsr & ASCSTATE_ANY) {
if (rsr & ASCSTATE_PE) {
port->icount.parity++;
writel(readl(DANUBE_ASC1_WHBSTATE) | ASCWHBSTATE_CLRPE, DANUBE_ASC1_WHBSTATE);
} else if (rsr & ASCSTATE_FE) {
port->icount.frame++;
writel(readl(DANUBE_ASC1_WHBSTATE) | ASCWHBSTATE_CLRFE, DANUBE_ASC1_WHBSTATE);
}
if (rsr & ASCSTATE_ROE) {
port->icount.overrun++;
writel(readl(DANUBE_ASC1_WHBSTATE) | ASCWHBSTATE_CLRROE, DANUBE_ASC1_WHBSTATE);
}
rsr &= port->read_status_mask;
if (rsr & ASCSTATE_PE)
flag = TTY_PARITY;
else if (rsr & ASCSTATE_FE)
flag = TTY_FRAME;
}
if ((rsr & port->ignore_status_mask) == 0)
tty_insert_flip_char(tty, ch, flag);
if (rsr & ASCSTATE_ROE)
/*
* Overrun is special, since it's reported
* immediately, and doesn't affect the current
* character
*/
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
}
if (ch != 0)
tty_flip_buffer_push(tty);
return;
}
static void
danubeasc_tx_chars (struct uart_port *port)
{
struct circ_buf *xmit = &port->info->xmit;
if (uart_tx_stopped(port)) {
danubeasc_stop_tx(port);
return;
}
while(((readl(DANUBE_ASC1_FSTAT) & ASCFSTAT_TXFFLMASK)
>> ASCFSTAT_TXFFLOFF) != DANUBEASC_TXFIFO_FULL)
{
if (port->x_char) {
writel(port->x_char, DANUBE_ASC1_TBUF);
port->icount.tx++;
port->x_char = 0;
continue;
}
if (uart_circ_empty(xmit))
break;
writel(port->info->xmit.buf[port->info->xmit.tail], DANUBE_ASC1_TBUF);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
}
static irqreturn_t
danubeasc_tx_int (int irq, void *port)
{
writel(ASC_IRNCR_TIR, DANUBE_ASC1_IRNCR);
danubeasc_start_tx(port);
mask_and_ack_danube_irq(irq);
return IRQ_HANDLED;
}
static irqreturn_t
danubeasc_er_int (int irq, void *port)
{
/* clear any pending interrupts */
writel(readl(DANUBE_ASC1_WHBSTATE) | ASCWHBSTATE_CLRPE |
ASCWHBSTATE_CLRFE | ASCWHBSTATE_CLRROE, DANUBE_ASC1_WHBSTATE);
return IRQ_HANDLED;
}
static irqreturn_t
danubeasc_rx_int (int irq, void *port)
{
writel(ASC_IRNCR_RIR, DANUBE_ASC1_IRNCR);
danubeasc_rx_chars((struct uart_port *) port);
mask_and_ack_danube_irq(irq);
return IRQ_HANDLED;
}
static unsigned int
danubeasc_tx_empty (struct uart_port *port)
{
int status;
status = readl(DANUBE_ASC1_FSTAT) & ASCFSTAT_TXFFLMASK;
return status ? 0 : TIOCSER_TEMT;
}
static unsigned int
danubeasc_get_mctrl (struct uart_port *port)
{
return TIOCM_CTS | TIOCM_CAR | TIOCM_DSR;
}
static void
danubeasc_set_mctrl (struct uart_port *port, u_int mctrl)
{
return;
}
static void
danubeasc_break_ctl (struct uart_port *port, int break_state)
{
return;
}
static void
danubeasc1_hw_init (void)
{
/* this setup was probably already done in ROM/u-boot but we do it again*/
/* TODO: GPIO pins are multifunction */
writel(readl(DANUBE_ASC1_CLC) & ~DANUBE_ASC1_CLC_DISS, DANUBE_ASC1_CLC);
writel((readl(DANUBE_ASC1_CLC) & ~ASCCLC_RMCMASK) | (1 << ASCCLC_RMCOFFSET), DANUBE_ASC1_CLC);
writel(0, DANUBE_ASC1_PISEL);
writel(((DANUBEASC_TXFIFO_FL << ASCTXFCON_TXFITLOFF) &
ASCTXFCON_TXFITLMASK) | ASCTXFCON_TXFEN | ASCTXFCON_TXFFLU, DANUBE_ASC1_TXFCON);
writel(((DANUBEASC_RXFIFO_FL << ASCRXFCON_RXFITLOFF) &
ASCRXFCON_RXFITLMASK) | ASCRXFCON_RXFEN | ASCRXFCON_RXFFLU, DANUBE_ASC1_RXFCON);
wmb ();
/*framing, overrun, enable */
writel(readl(DANUBE_ASC1_CON) | ASCCON_M_8ASYNC | ASCCON_FEN | ASCCON_TOEN | ASCCON_ROEN,
DANUBE_ASC1_CON);
}
static int
danubeasc_startup (struct uart_port *port)
{
unsigned long flags;
int retval;
/* this assumes: CON.BRS = CON.FDE = 0 */
if (uartclk == 0)
uartclk = danube_get_fpi_hz();
danubeasc_port.uartclk = uartclk;
danubeasc1_hw_init();
local_irq_save(flags);
retval = request_irq(DANUBEASC1_RIR, danubeasc_rx_int, IRQF_DISABLED, "asc_rx", port);
if (retval){
printk("failed to request danubeasc_rx_int\n");
return retval;
}
retval = request_irq(DANUBEASC1_TIR, danubeasc_tx_int, IRQF_DISABLED, "asc_tx", port);
if (retval){
printk("failed to request danubeasc_tx_int\n");
goto err1;
}
retval = request_irq(DANUBEASC1_EIR, danubeasc_er_int, IRQF_DISABLED, "asc_er", port);
if (retval){
printk("failed to request danubeasc_er_int\n");
goto err2;
}
writel(ASC_IRNREN_RX_BUF | ASC_IRNREN_TX_BUF | ASC_IRNREN_ERR | ASC_IRNREN_TX,
DANUBE_ASC1_IRNREN);
local_irq_restore(flags);
return 0;
err2:
free_irq(DANUBEASC1_TIR, port);
err1:
free_irq(DANUBEASC1_RIR, port);
local_irq_restore(flags);
return retval;
}
static void
danubeasc_shutdown (struct uart_port *port)
{
free_irq(DANUBEASC1_RIR, port);
free_irq(DANUBEASC1_TIR, port);
free_irq(DANUBEASC1_EIR, port);
/*
* disable the baudrate generator to disable the ASC
*/
writel(0, DANUBE_ASC1_CON);
/* flush and then disable the fifos */
writel(readl(DANUBE_ASC1_RXFCON) | ASCRXFCON_RXFFLU, DANUBE_ASC1_RXFCON);
writel(readl(DANUBE_ASC1_RXFCON) & ~ASCRXFCON_RXFEN, DANUBE_ASC1_RXFCON);
writel(readl(DANUBE_ASC1_TXFCON) | ASCTXFCON_TXFFLU, DANUBE_ASC1_TXFCON);
writel(readl(DANUBE_ASC1_TXFCON) & ~ASCTXFCON_TXFEN, DANUBE_ASC1_TXFCON);
}
static void danubeasc_set_termios(struct uart_port *port, struct ktermios *new, struct ktermios *old)
{
unsigned int cflag;
unsigned int iflag;
unsigned int quot;
unsigned int baud;
unsigned int con = 0;
unsigned long flags;
cflag = new->c_cflag;
iflag = new->c_iflag;
/* byte size and parity */
switch (cflag & CSIZE) {
case CS7:
con = ASCCON_M_7ASYNC;
break;
case CS5:
case CS6:
default:
con = ASCCON_M_8ASYNC;
break;
}
if (cflag & CSTOPB)
con |= ASCCON_STP;
if (cflag & PARENB) {
if (!(cflag & PARODD))
con &= ~ASCCON_ODD;
else
con |= ASCCON_ODD;
}
port->read_status_mask = ASCSTATE_ROE;
if (iflag & INPCK)
port->read_status_mask |= ASCSTATE_FE | ASCSTATE_PE;
port->ignore_status_mask = 0;
if (iflag & IGNPAR)
port->ignore_status_mask |= ASCSTATE_FE | ASCSTATE_PE;
if (iflag & IGNBRK) {
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (iflag & IGNPAR)
port->ignore_status_mask |= ASCSTATE_ROE;
}
if ((cflag & CREAD) == 0)
port->ignore_status_mask |= UART_DUMMY_UER_RX;
/* set error signals - framing, parity and overrun, enable receiver */
con |= ASCCON_FEN | ASCCON_TOEN | ASCCON_ROEN;
local_irq_save(flags);
/* set up CON */
writel(readl(DANUBE_ASC1_CON) | con, DANUBE_ASC1_CON);
/* Set baud rate - take a divider of 2 into account */
baud = uart_get_baud_rate(port, new, old, 0, port->uartclk / 16);
quot = uart_get_divisor(port, baud);
quot = quot / 2 - 1;
/* disable the baudrate generator */
writel(readl(DANUBE_ASC1_CON) & ~ASCCON_R, DANUBE_ASC1_CON);
/* make sure the fractional divider is off */
writel(readl(DANUBE_ASC1_CON) & ~ASCCON_FDE, DANUBE_ASC1_CON);
/* set up to use divisor of 2 */
writel(readl(DANUBE_ASC1_CON) & ~ASCCON_BRS, DANUBE_ASC1_CON);
/* now we can write the new baudrate into the register */
writel(quot, DANUBE_ASC1_BG);
/* turn the baudrate generator back on */
writel(readl(DANUBE_ASC1_CON) | ASCCON_R, DANUBE_ASC1_CON);
/* enable rx */
writel(ASCWHBSTATE_SETREN, DANUBE_ASC1_WHBSTATE);
local_irq_restore(flags);
}
static const char*
danubeasc_type (struct uart_port *port)
{
return port->type == PORT_DANUBEASC ? "DANUBEASC" : NULL;
}
static void
danubeasc_release_port (struct uart_port *port)
{
return;
}
static int
danubeasc_request_port (struct uart_port *port)
{
return 0;
}
static void
danubeasc_config_port (struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_DANUBEASC;
danubeasc_request_port(port);
}
}
static int
danubeasc_verify_port (struct uart_port *port, struct serial_struct *ser)
{
int ret = 0;
if (ser->type != PORT_UNKNOWN && ser->type != PORT_DANUBEASC)
ret = -EINVAL;
if (ser->irq < 0 || ser->irq >= NR_IRQS)
ret = -EINVAL;
if (ser->baud_base < 9600)
ret = -EINVAL;
return ret;
}
static struct uart_ops danubeasc_pops = {
.tx_empty = danubeasc_tx_empty,
.set_mctrl = danubeasc_set_mctrl,
.get_mctrl = danubeasc_get_mctrl,
.stop_tx = danubeasc_stop_tx,
.start_tx = danubeasc_start_tx,
.stop_rx = danubeasc_stop_rx,
.enable_ms = danubeasc_enable_ms,
.break_ctl = danubeasc_break_ctl,
.startup = danubeasc_startup,
.shutdown = danubeasc_shutdown,
.set_termios = danubeasc_set_termios,
.type = danubeasc_type,
.release_port = danubeasc_release_port,
.request_port = danubeasc_request_port,
.config_port = danubeasc_config_port,
.verify_port = danubeasc_verify_port,
};
static struct uart_port danubeasc_port = {
membase: (void *)DANUBE_ASC1_BASE_ADDR,
mapbase: DANUBE_ASC1_BASE_ADDR,
iotype: SERIAL_IO_MEM,
irq: DANUBEASC1_RIR,
uartclk: 0,
fifosize: 16,
unused: {DANUBEASC1_TIR, DANUBEASC1_EIR},
type: PORT_DANUBEASC,
ops: &danubeasc_pops,
flags: ASYNC_BOOT_AUTOCONF,
};
static void
danubeasc_console_write (struct console *co, const char *s, u_int count)
{
int i, fifocnt;
unsigned long flags;
local_irq_save(flags);
for (i = 0; i < count; i++)
{
/* wait until the FIFO is not full */
do
{
fifocnt = (readl(DANUBE_ASC1_FSTAT) & ASCFSTAT_TXFFLMASK)
>> ASCFSTAT_TXFFLOFF;
} while (fifocnt == DANUBEASC_TXFIFO_FULL);
if (s[i] == '\0')
{
break;
}
if (s[i] == '\n')
{
writel('\r', DANUBE_ASC1_TBUF);
do
{
fifocnt = (readl(DANUBE_ASC1_FSTAT) & ASCFSTAT_TXFFLMASK)
>> ASCFSTAT_TXFFLOFF;
} while (fifocnt == DANUBEASC_TXFIFO_FULL);
}
writel(s[i], DANUBE_ASC1_TBUF);
}
local_irq_restore(flags);
}
static int __init
danubeasc_console_setup (struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (uartclk == 0)
uartclk = danube_get_fpi_hz();
co->index = 0;
port = &danubeasc_port;
danubeasc_port.uartclk = uartclk;
danubeasc_port.type = PORT_DANUBEASC;
if (options){
uart_parse_options(options, &baud, &parity, &bits, &flow);
}
return uart_set_options(port, co, baud, parity, bits, flow);
}
static struct uart_driver danubeasc_reg;
static struct console danubeasc_console = {
name: "ttyS",
write: danubeasc_console_write,
device: uart_console_device,
setup: danubeasc_console_setup,
flags: CON_PRINTBUFFER,
index: -1,
data: &danubeasc_reg,
};
static int __init
danubeasc_console_init (void)
{
register_console(&danubeasc_console);
return 0;
}
console_initcall(danubeasc_console_init);
static struct uart_driver danubeasc_reg = {
.owner = THIS_MODULE,
.driver_name = "serial",
.dev_name = "ttyS",
.major = TTY_MAJOR,
.minor = 64,
.nr = 1,
.cons = &danubeasc_console,
};
static int __init
danubeasc_init (void)
{
unsigned char res;
uart_register_driver(&danubeasc_reg);
res = uart_add_one_port(&danubeasc_reg, &danubeasc_port);
return res;
}
static void __exit
danubeasc_exit (void)
{
uart_unregister_driver(&danubeasc_reg);
}
module_init(danubeasc_init);
module_exit(danubeasc_exit);
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("MIPS Danube serial port driver");
MODULE_LICENSE("GPL");