Opa_omroep-automatiseren/venv/lib/python3.8/site-packages/pymeeus/Pluto.py

400 lines
11 KiB
Python
Raw Normal View History

2020-12-27 20:00:11 +00:00
# -*- coding: utf-8 -*-
# PyMeeus: Python module implementing astronomical algorithms.
# Copyright (C) 2018 Dagoberto Salazar
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from math import sin, cos, sqrt, asin, atan2
from pymeeus.Angle import Angle
from pymeeus.Epoch import Epoch, JDE2000
from pymeeus.Sun import Sun
"""
.. module:: Pluto
:synopsis: Class to model Pluto minor planet
:license: GNU Lesser General Public License v3 (LGPLv3)
.. moduleauthor:: Dagoberto Salazar
"""
PLUTO_ARGUMENT = [
(0.0, 0.0, 1.0),
(0.0, 0.0, 2.0),
(0.0, 0.0, 3.0),
(0.0, 0.0, 4.0),
(0.0, 0.0, 5.0),
(0.0, 0.0, 6.0),
(0.0, 1.0, -1.0),
(0.0, 1.0, 0.0),
(0.0, 1.0, 1.0),
(0.0, 1.0, 2.0),
(0.0, 1.0, 3.0),
(0.0, 2.0, -2.0),
(0.0, 2.0, -1.0),
(0.0, 2.0, 0.0),
(1.0, -1.0, 0.0),
(1.0, -1.0, 1.0),
(1.0, 0.0, -3.0),
(1.0, 0.0, -2.0),
(1.0, 0.0, -1.0),
(1.0, 0.0, 0.0),
(1.0, 0.0, 1.0),
(1.0, 0.0, 2.0),
(1.0, 0.0, 3.0),
(1.0, 0.0, 4.0),
(1.0, 1.0, -3.0),
(1.0, 1.0, -2.0),
(1.0, 1.0, -1.0),
(1.0, 1.0, 0.0),
(1.0, 1.0, 1.0),
(1.0, 1.0, 3.0),
(2.0, 0.0, -6.0),
(2.0, 0.0, -5.0),
(2.0, 0.0, -4.0),
(2.0, 0.0, -3.0),
(2.0, 0.0, -2.0),
(2.0, 0.0, -1.0),
(2.0, 0.0, 0.0),
(2.0, 0.0, 1.0),
(2.0, 0.0, 2.0),
(2.0, 0.0, 3.0),
(3.0, 0.0, -2.0),
(3.0, 0.0, -1.0),
(3.0, 0.0, 0.0)
]
"""This table contains Pluto's argument coefficients according to Table 37.A in
Meeus' book, page 265."""
PLUTO_LONGITUDE = [
(-19799805.0, 19850055.0),
(897144.0, -4954829.0),
(611149.0, 1211027.0),
(-341243.0, -189585.0),
(129287.0, -34992.0),
(-38164.0, 30893.0),
(20442.0, -9987.0),
(-4063.0, -5071.0),
(-6016.0, -3336.0),
(-3956.0, 3039.0),
(-667.0, 3572.0),
(1276.0, 501.0),
(1152.0, -917.0),
(630.0, -1277.0),
(2571.0, -459.0),
(899.0, -1449.0),
(-1016.0, 1043.0),
(-2343.0, -1012.0),
(7042.0, 788.0),
(1199.0, -338.0),
(418.0, -67.0),
(120.0, -274.0),
(-60.0, -159.0),
(-82.0, -29.0),
(-36.0, -29.0),
(-40.0, 7.0),
(-14.0, 22.0),
(4.0, 13.0),
(5.0, 2.0),
(-1.0, 0.0),
(2.0, 0.0),
(-4.0, 5.0),
(4.0, -7.0),
(14.0, 24.0),
(-49.0, -34.0),
(163.0, -48.0),
(9.0, -24.0),
(-4.0, 1.0),
(-3.0, 1.0),
(1.0, 3.0),
(-3.0, -1.0),
(5.0, -3.0),
(0.0, 0.0)
]
"""This table contains the periodic terms to compute Pluto's heliocentric
longitude according to Table 37.A in Meeus' book, page 265"""
PLUTO_LATITUDE = [
(-5452852.0, -14974862),
(3527812.0, 1672790.0),
(-1050748.0, 327647.0),
(178690.0, -292153.0),
(18650.0, 100340.0),
(-30697.0, -25823.0),
(4878.0, 11248.0),
(226.0, -64.0),
(2030.0, -836.0),
(69.0, -604.0),
(-247.0, -567.0),
(-57.0, 1.0),
(-122.0, 175.0),
(-49.0, -164.0),
(-197.0, 199.0),
(-25.0, 217.0),
(589.0, -248.0),
(-269.0, 711.0),
(185.0, 193.0),
(315.0, 807.0),
(-130.0, -43.0),
(5.0, 3.0),
(2.0, 17.0),
(2.0, 5.0),
(2.0, 3.0),
(3.0, 1.0),
(2.0, -1.0),
(1.0, -1.0),
(0.0, -1.0),
(0.0, 0.0),
(0.0, -2.0),
(2.0, 2.0),
(-7.0, 0.0),
(10.0, -8.0),
(-3.0, 20.0),
(6.0, 5.0),
(14.0, 17.0),
(-2.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 1.0),
(0.0, 0.0),
(1.0, 0.0)
]
"""This table contains the periodic terms to compute Pluto's heliocentric
latitude according to Table 37.A in Meeus' book, page 265"""
PLUTO_RADIUS_VECTOR = [
(66865439.0, 68951812.0),
(-11827535.0, -332538.0),
(1593179.0, -1438890.0),
(-18444.0, 483220.0),
(-65977.0, -85431.0),
(31174.0, -6032.0),
(-5794.0, 22161.0),
(4601.0, 4032.0),
(-1729.0, 234.0),
(-415.0, 702.0),
(239.0, 723.0),
(67.0, -67.0),
(1034.0, -451.0),
(-129.0, 504.0),
(480.0, -231.0),
(2.0, -441.0),
(-3359.0, 265.0),
(7856.0, -7832.0),
(36.0, 45763.0),
(8663.0, 8547.0),
(-809.0, -769.0),
(263.0, -144.0),
(-126.0, 32.0),
(-35.0, -16.0),
(-19.0, -4.0),
(-15.0, 8.0),
(-4.0, 12.0),
(5.0, 6.0),
(3.0, 1.0),
(6.0, -2.0),
(2.0, 2.0),
(-2.0, -2.0),
(14.0, 13.0),
(-63.0, 13.0),
(136.0, -236.0),
(273.0, 1065.0),
(251.0, 149.0),
(-25.0, -9.0),
(9.0, -2.0),
(-8.0, 7.0),
(2.0, -10.0),
(19.0, 35.0),
(10.0, 3.0)
]
"""This table contains the periodic terms to compute Pluto's heliocentric
radius vector according to Table 37.A in Meeus' book, page 265"""
class Pluto(object):
"""
Class Pluto models that minor planet.
"""
@staticmethod
def geometric_heliocentric_position(epoch):
"""This method computes the geometric heliocentric position of planet
Pluto for a given epoch.
:param epoch: Epoch to compute Pluto position, as an Epoch object
:type epoch: :py:class:`Epoch`
:returns: A tuple with the heliocentric longitude and latitude (as
:py:class:`Angle` objects), and the radius vector (as a float,
in astronomical units), in that order
:rtype: tuple
:raises: TypeError if input value is of wrong type.
:raises: ValueError if input epoch outside the 1885-2099 range.
>>> epoch = Epoch(1992, 10, 13.0)
>>> l, b, r = Pluto.geometric_heliocentric_position(epoch)
>>> print(round(l, 5))
232.74071
>>> print(round(b, 5))
14.58782
>>> print(round(r, 6))
29.711111
"""
# First check that input value is of correct types
if not isinstance(epoch, Epoch):
raise TypeError("Invalid input type")
# Check that the input epoch is within valid range
y = epoch.year()
if y < 1885.0 or y > 2099.0:
raise ValueError("Epoch outside the 1885-2099 range")
t = (epoch - JDE2000) / 36525.0
jj = 34.35 + 3034.9057 * t
ss = 50.08 + 1222.1138 * t
pp = 238.96 + 144.96 * t
# Compute the arguments
corr_lon = 0.0
corr_lat = 0.0
corr_rad = 0.0
for n, argument in enumerate(PLUTO_ARGUMENT):
iii, jjj, kkk = argument
alpha = Angle(iii * jj + jjj * ss + kkk * pp).to_positive()
alpha = alpha.rad()
sin_a = sin(alpha)
cos_a = cos(alpha)
a_lon, b_lon = PLUTO_LONGITUDE[n]
corr_lon += a_lon * sin_a + b_lon * cos_a
a_lat, b_lat = PLUTO_LATITUDE[n]
corr_lat += a_lat * sin_a + b_lat * cos_a
a_rad, b_rad = PLUTO_RADIUS_VECTOR[n]
corr_rad += a_rad * sin_a + b_rad * cos_a
# The coefficients in the tables were scaled up. Let's scale them down
corr_lon /= 1000000.0
corr_lat /= 1000000.0
corr_rad /= 10000000.0
lon = Angle(238.958116 + 144.96 * t + corr_lon)
lat = Angle(-3.908239 + corr_lat)
radius = 40.7241346 + corr_rad
return lon, lat, radius
@staticmethod
def geocentric_position(epoch):
"""This method computes the geocentric position of Pluto (right
ascension and declination) for the given epoch, for the standard
equinox J2000.0.
:param epoch: Epoch to compute geocentric position, as an Epoch object
:type epoch: :py:class:`Epoch`
:returns: A tuple containing the right ascension and the declination as
Angle objects
:rtype: tuple
:raises: TypeError if input value is of wrong type.
:raises: ValueError if input epoch outside the 1885-2099 range.
>>> epoch = Epoch(1992, 10, 13.0)
>>> ra, dec = Pluto.geocentric_position(epoch)
>>> print(ra.ra_str(n_dec=1))
15h 31' 43.7''
>>> print(dec.dms_str(n_dec=0))
-4d 27' 29.0''
"""
# First check that input value is of correct types
if not isinstance(epoch, Epoch):
raise TypeError("Invalid input type")
# Check that the input epoch is within valid range
y = epoch.year()
if y < 1885.0 or y > 2099.0:
raise ValueError("Epoch outside the 1885-2099 range")
# Compute the heliocentric position of Pluto
ll, b, r = Pluto.geometric_heliocentric_position(epoch)
# Change angles to radians
ll = ll.rad()
b = b.rad()
# Values corresponding to obliquity of ecliptic (epsilon) for J2000.0
sine = 0.397777156
cose = 0.917482062
x = r * cos(ll) * cos(b)
y = r * (sin(ll) * cos(b) * cose - sin(b) * sine)
z = r * (sin(ll) * cos(b) * sine + sin(b) * cose)
# Compute Sun's J2000.0 rectacngular coordinates
xs, ys, zs = Sun.rectangular_coordinates_j2000(epoch)
# Compute auxiliary quantities
xi = x + xs
eta = y + ys
zeta = z + zs
# Compute Pluto's distance to Earth
delta = sqrt(xi * xi + eta * eta + zeta * zeta)
# Get the light-time difference
tau = 0.0057755183 * delta
# Repeat the computations using the light-time correction
ll, b, r = Pluto.geometric_heliocentric_position(epoch - tau)
# Change angles to radians
ll = ll.rad()
b = b.rad()
x = r * cos(ll) * cos(b)
y = r * (sin(ll) * cos(b) * cose - sin(b) * sine)
z = r * (sin(ll) * cos(b) * sine + sin(b) * cose)
# Compute auxiliary quantities
xi = x + xs
eta = y + ys
zeta = z + zs
# Compute Pluto's distance to Earth
delta = sqrt(xi * xi + eta * eta + zeta * zeta)
# Compute right ascension and declination
alpha = Angle(atan2(eta, xi), radians=True)
dec = Angle(asin(zeta / delta), radians=True)
return alpha.to_positive(), dec
def main():
# Let's define a small helper function
def print_me(msg, val):
print("{}: {}".format(msg, val))
# Let's show some uses of Pluto class
print("\n" + 35 * "*")
print("*** Use of Pluto class")
print(35 * "*" + "\n")
# Let's now compute the heliocentric position for a given epoch
epoch = Epoch(1992, 10, 13.0)
lon, lat, r = Pluto.geometric_heliocentric_position(epoch)
print_me("Geometric Heliocentric Longitude", lon.to_positive())
print_me("Geometric Heliocentric Latitude", lat)
print_me("Radius vector", r)
print("")
# Compute the geocentric position for 1992/10/13:
epoch = Epoch(1992, 10, 13.0)
ra, dec = Pluto.geocentric_position(epoch)
print_me("Right ascension", ra.ra_str(n_dec=1))
print_me("Declination", dec.dms_str(n_dec=1))
if __name__ == "__main__":
main()